第24章圆的复习课件.ppt
《第24章圆的复习课件.ppt》由会员分享,可在线阅读,更多相关《第24章圆的复习课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!圆、与圆有关的位置关系(圆、与圆有关的位置关系(圆、与圆有关的位置关系(圆、与圆有关的位置关系(圆、与圆有关的位置关系(圆、与圆有关的位置关系(1 1 1)2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!圆的相关概念圆的相关概念欢迎046班的同学们!注意听课,积极思考呵!2022年6月4日5时27分、圆的基本元素、圆的基本元素: 圆心、半径。圆心、半径。一、知识点:一、知识点:、圆的对称性、圆的对称性: 圆的旋转对称性、圆是中心对称图形、圆圆的旋转对称性、圆是中心对称图形、圆是轴对称图形。是轴对称图
2、形。3、圆周角、圆心角、弦、弦心距的关系、圆周角、圆心角、弦、弦心距的关系:定理定理:在同圆或等圆中在同圆或等圆中,相等的圆心角所对的弧相等相等的圆心角所对的弧相等, 所对的弦、所对的弦、所对弦心距的也相等。所对弦心距的也相等。推论推论:在同圆或等圆中在同圆或等圆中,如果两个圆心角如果两个圆心角,两条弧两条弧,两条弦、两条两条弦、两条弦心距中有一组量相等弦心距中有一组量相等,那么它那么它 们所对应的其余各组量都分们所对应的其余各组量都分别相等。别相等。4、过三点的圆、过三点的圆: (1)定理定理:不在同一直线上的三点确定一个圆。不在同一直线上的三点确定一个圆。 (2)三角形的外接圆的圆心是三边
3、的垂直平分线的交点。三角形的外接圆的圆心是三边的垂直平分线的交点。5、垂径定理、垂径定理:垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所对并且平分弦所对的两条弧。的两条弧。欢迎046班的同学们!注意听课,积极思考呵!2022年6月4日5时27分6、点与圆的位置关系、点与圆的位置关系: 点在圆外点在圆外;点在圆上点在圆上; 点在圆点在圆内内.判断方法判断方法: 交点个数交点个数 点与圆心的点与圆心的 距离距离d和半径和半径r的大小的大小关系关系.7、直线与圆的位置关系、直线与圆的位置关系: 相离相离,相切相切, 相交相交. 判断方法判断方法: 交点个数交点个数 圆心与直线的距离圆心与直线
4、的距离d和半径和半径r的的大小关系大小关系.8、两圆的位置关系、两圆的位置关系: 外离外离 相切相切 相交相交 内切内切 内含内含 判断方法判断方法: 交点个数交点个数 圆心距圆心距d与半径与半径r1、r2的大小的大小关系关系.2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!2BCACABAD9、圆的切线、圆的切线: (1)与圆有唯一一个交点的直线是圆的切线。与圆有唯一一个交点的直线是圆的切线。 (2)经过半径的外端点且垂直于这条半径的直线是圆的经过半径的外端点且垂直于这条半径的直线是圆的切线。切线。 (3)切线性质定理切线性质定理:_。10、切线长定理、切线长定理:_
5、。11、三角形内切圆的半径、内切圆的面积、三边长的关系、三角形内切圆的半径、内切圆的面积、三边长的关系:2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!填空、填空、 1、 在同圆或等圆中,如果圆心角相等,那么它所对的弧在同圆或等圆中,如果圆心角相等,那么它所对的弧_,所对的弦,所对的弦_; 2、在同圆或等圆中,如果弧相等,那么在同圆或等圆中,如果弧相等,那么_相相等,等,_相等;相等; 3、在同圆或等圆中,如果弦相等,那么在同圆或等圆中,如果弦相等,那么_相相等,等,_相等;相等;2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!、垂径定理:、垂径
6、定理:_。、半圆或直径所对的圆周角都是、半圆或直径所对的圆周角都是_。、的圆周角所对的弦是的圆周角所对的弦是_。、在同一圆中,同弧或等弧所对的圆周角、在同一圆中,同弧或等弧所对的圆周角_,都等于该弧所对的都等于该弧所对的_的一半,相等的圆周角所对的一半,相等的圆周角所对的的_相等。相等。2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!一、一、垂径定理垂径定理OABCDMAM=BM,重视:重视:模型模型“垂径定理直角三角形垂径定理直角三角形” 若若 CD是直径是直径 CDAB可推得可推得 AC=BC,AD=BD.1.1.定理定理 垂直于弦的直径垂直于弦的直径平分弦平分弦,
7、 ,并且平分并且平分弦所的两条弧弦所的两条弧. .2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!2 2、垂径定理的推论、垂径定理的推论CDAB,n由由 CD是直径是直径 AM=BM可推得可推得 AC=BC,AD=BD.OCD MAB平分弦(平分弦(不是直径不是直径)的直径垂直于弦)的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!(1)直径直径 (过圆心的线过圆心的线);(2)垂直弦;垂直弦; (3) 平分弦平分弦 ;(4)平分劣弧;平分劣弧;(5)平分优弧平分优弧.知二得三知二得三
8、注意注意: “ 直径平分弦则垂直弦直径平分弦则垂直弦.” 这句话对吗这句话对吗?( )错错OABCDM2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧例例OO的半径为的半径为10cm10cm,弦,弦ABCDABCD, AB=16AB=16,CD=12CD=12,则,则ABAB、CDCD间的间的 距离是距离是_ _ . .2cm或或14cm2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵! 在在同圆同圆或或等圆等圆中中, ,如果如果两个圆心角两个圆心角
9、, ,两条弧两条弧, ,两条弦两条弦, ,两条弦心距两条弦心距中中, ,有一组量有一组量相等相等, ,那么它们所对应的其余各组量都分别相那么它们所对应的其余各组量都分别相等等. .OABDABD如由条件如由条件:AB=ABAB=AB OD=OD可推出AOB=AOB二、圆心角、弧、弦、弦心距的关系二、圆心角、弧、弦、弦心距的关系2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!三、圆周三、圆周角定理及推论角定理及推论 9090的圆周角所对的弦是的圆周角所对的弦是 . .OABCOBACDEOABC 定理定理: : 在同圆或等圆中在同圆或等圆中, ,同弧或等弧同弧或等弧所对的
10、圆周角相等所对的圆周角相等, ,都等于这弧都等于这弧所对的所对的圆心角的一半圆心角的一半. . 推论推论: :直径所对的圆周角是直径所对的圆周角是 . .直角直角直径直径判断判断: (1) 相等的圆心角所对的弧相等相等的圆心角所对的弧相等. (2)相等的圆周角所对的弧相等相等的圆周角所对的弧相等. (3) 等弧所对的圆周角相等等弧所对的圆周角相等.()()()2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!1、如图1,AB是 O的直径,C为圆上一点,弧AC度数为60,ODBC,D为垂足,且OD=10,则AB=_,BC=_;2、已知、是同圆的两段弧,且弧AB等于2倍弧AC
11、,则弦AB与CD之间的关系为( );A.AB=2CD B.AB2CD D.不能确定3、 如图2, O中弧AB的度数为60,AC是 O的直径,那么BOC等于 ( );A150 B130 C120 D604、在ABC中,A70,若O为ABC的外心,BOC= ;若O为ABC的内心,BOC= 图1图2A B C D O 20BC14001250 5、两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽度为_ cm; 6、如图1,已知 O,AB为直径,ABCD,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来 ;7、为改善市区人民生活环境,市建设污水管网工程,某圆柱型水管的直径为100 c
12、m,截面如图2,若管内污水的面宽AB=60 cm,则污水的最大深度为 cm; 图1图2A B C D E m n OOA B1102022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!.p.or.o.p.o.p四、点和圆的位置关系四、点和圆的位置关系Opr 点点p在在 o内内Op=r 点点p在在 o上上Opr 点点p在在 o外外2022年6月4日5时27分欢迎046班的同学们!注意听课,积极思考呵!不在同一直线上的三个点确定一个不在同一直线上的三个点确定一个圆圆(这个三角形叫做圆这个三角形叫做圆的的内接内接三角形,这个圆叫做三角形的三角形,这个圆叫做三角形的外接外接圆,圆心叫
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 24 复习 课件
限制150内