《常用的电脑基础知识大全.docx》由会员分享,可在线阅读,更多相关《常用的电脑基础知识大全.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、常用的电脑基础知识大全常用的电脑基础知识大全怀健0世纪70年代,计算机性能有了高速发展,同时体积也变得越来越小,使用计算机的门槛变得更低,越来越多的用户能够使用计算机。没有一个计算机是信息孤岛促使着计算机网络的出现和发展。计算机网络的诞生20世纪80年代,一种能够互连多种计算机的网络随之诞生。它能够让各式各样的计算机相连,从大型的超级计算机或主机到小型电脑。20世纪90年代,真正实现了一人一机的环境,但是这种环境的搭建仍然价格不菲。与此同时,诸如电子邮件(E-mail)、万维网(WWW,WorldWideWeb)等信息传播方式如雨后春笋般迎来了史无前例的发展,使得互联网从大到整个公司小到每个家
2、庭内部,都得以广泛普及。计算机网络的高速发展现如今,越来越多的终端设备接入互联网,使互联网经历了史无前例的高潮,近年来3G、4G、5G通信技术的发展更是互联网高速发展的产物。很多发展道路各不一样的网络技术也都正在向互联网靠拢。例如,曾经一直作为通信基础设施、支撑通信网络的网。随着互联网的发展,其地位也随着时间的推移被IP(InternetProtocol)网所取代,IP也是互联网发展的产物。网络安全正如互联网也具有两面性,互联网的出现方便了用户,同时也方便了一些不法分子。互联网的便捷也带来了一些负面影响,计算机病毒的损害、信息泄漏、网络诈骗层出不穷。在现实生活中,通常情况下我们挨揍了会予以还击
3、,但是在互联网中,你被不法分子攻击通常情况下是无力还击的,只能防御,由于还击需要你精通计算机和互联网,这通常情况下很多人办不到。通常情况下公司和企业容易被作为不法分子获利的对象,所以,作为公司或者企业,要想不受攻击或者防御攻击,需要建立安全的互联网连接。互联网协议协议这个名词不仅局限于互联网范畴,也体如今日常生活中,比方情侣双方约定好在哪个地点吃饭,这个约定也是一种协议,比方你应聘成功了,企业会和你签订劳动合同,这种双方的雇佣关系也是一种协议。注意本人一个人对本人的约定不能成为协议,协议的前提条件必须是多人约定。那么网络协议是什么呢?网络协议就是网络中(包括互联网)传递、管理信息的一些规范。好
4、像人与人之间互相沟通是需要遵循一定的规矩一样,计算机之间的互相通信需要共同遵守一定的规则,这些规则就称为网络协议。没有网络协议的互联网是混乱的,就和人类社会一样,人不能想怎么样就怎么样,你的行为约束是遭到法律的约束的;那么互联网中的端系统也不能本人想发什么发什么,也是需要遭到通信协议约束的。我们一般都了解过HTTP协议,HTTP是一个在计算机世界里专门在两点之间传输文字、图片、音频、视频等超文本数据的约定和规范但是互联网又不只要HTTP协议,它还有很多其他的比方IP、TCP、UDP、DNS协议等。下面是一些协议的汇总和介绍ISO在制定标准化的OSI之前,对网络体系构造相关的问题进行了充分的讨论
5、,最终提出了作为通信协议设计指标的OSI参考模型。这一模型将通信协议中必要的功能分为了7层。通过这7层分层,使那些比拟复杂的协议简单化。在OSI标准模型中,每一层协议都接收由它下一层所提供的特定服务,并且负责为上一层提供服务,上层协议和下层协议之间通常会开放接口,同一层之间的交互所遵守的约定叫做协议。OSI标准模型上图只是简单的介绍了一下层与层之间的通信规范和上层与下层的通信规范,并未介绍详细的网络协议分层,实际上,OSI标准模型将复杂的协议整理并分为了易于理解的7层。如下列图所示互联网的通信协议都对应了7层中的某一层,通过这一点,能够了解协议在整个网络模型中的作用,一般来讲,各个分层的主要作
6、用如下应用层:应用层是OSI标准模型的最顶层,是直接为应用进程提供服务的。其作用是在实现多个系统应用进程互相通信的同时,完成一系列业务处理所需的服务。包括文件传输、电子邮件远程登录和远端接口调用等协议。表示层:表示层向上对应用进程服务,向下接收会话层提供的服务,表示层位于OSI标准模型的第六层,表示层的主要作用就是将设备的固有数据格式转换为网络标准传输格式。会话层:会话层位于OSI标准模型的第五层,它是建立在传输层之上,利用传输层提供的服务建立和维持会话。传输层:传输层位于OSI标准模型的第四层,它在整个OSI标准模型中起到了至关重要的作用。传输层涉及到两个节点之间的数据传输,向上层提供可靠的
7、数据传输服务。传输层的服务一般要经历传输连接建立阶段,数据传输阶段,传输连接释放阶段3个阶段才算完成一个完好的服务经过。网络层:网络层位于OSI标准模型的第三层,它位于传输层和数据链路层的中间,将数据设法从源端经过若干个中间节点传送到另一端,进而向运输层提供最基本的端到端的数据传送服务。数据链路层:数据链路层位于物理层和网络层中间,数据链路层定义了在单个链路上怎样传输数据。物理层:物理层是OSI标准模型中最低的一层,物理层是整个OSI协议的基础,就好像房屋的地基一样,物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。TCP/IP协议簇TCP/IP协议是我们程序员接触最
8、多的协议,实际上,TCP/IP又被称为TCP/IP协议簇,它并不特指单纯的TCP和IP协议,而是包容了许很多多的网络协议。OSI模型共有七层,从下到上分别是物理层、数据链路层、网络层、运输层、会话层、表示层和应用层。但是这显然是有些复杂的,所以在TCP/IP协议中,它们被简化为了四个层次和OSI七层网络协议的主要区别如下应用层、表示层、会话层三个层次提供的服务相差不是很大,所以在TCP/IP协议中,它们被合并为应用层一个层次。由于数据链路层和物理层的内容很类似,所以在TCP/IP协议中它们被归并在网络接口层一个层次里。“我们的主要研究对象就是TCP/IP的四层协议。下面c_uan和你聊一聊TC
9、P/IP协议簇中都有哪些详细的协议IP协议IP是互联网协议(InternetProtocol),位于网络层。IP是整个TCP/IP协议族的核心,也是构成互联网的基础。IP能够为运输层提供数据分发,同时也能够组装数据供运输层使用。它将多个单个网络连接成为一个互联网,这样能够提高网络的可扩展性,实现大规模的网络互联。二是分割顶层网络和底层网络之间的耦合关系。ICMP协议ICMP协议是InternetControlMessageProtocol,ICMP协议主要用于在IP主机、路由器之间传递控制消息。ICMP属于网络层的协议,当碰到IP无法访问目的、IP路由器无法根据当前传输速率转发数据包时,会自动
10、发送ICMP消息,从这个角度来讲,ICMP协议能够看作是错误侦测与回报机制,让我们检查网络状况、也能够确保连线的准确性。ARP协议ARP协议是地址解析协议,即AddressResolutionProtocol,它能够根据IP地址获取物理地址。主机发送信息时会将包含目的IP的ARP请求广播到局域网络上的所有主机,并接受返回消息,以此来确定物理地址。收到消息后的物理地址和IP地址会在ARP中缓存一段时间,下次查询的时候直接从ARP中查询即可。TCP协议TCP就是传输控制协议,也就是TransmissionControlProtocol,它是一种面向连接的、可靠的、基于字节流的传输协议,TCP协议位
11、于传输层,TCP协议是TCP/IP协议簇中的核心协议,它最大的特点就是提供可靠的数据交付。TCP的主要特点有慢启动、拥塞控制、快速重传、可恢复。UDP协议UDP协议就是用户数据报协议,也就是UserDatagramProtocol,UDP也是一种传输层的协议,与TCP相比,UDP提供一种不可靠的数据交付,也就是讲,UDP协议不保证数据能否到达目的节点,也就是讲,当报文发送之后,是无法得知其能否安全完好到达的。UDP是一种无连接的协议,传输数据之前源端和终端无需建立连接,不对数据报进行检查与修改,无须等待对方的应答,会出现分组丢失、重复、乱序等现象。但是UDP具有较好的实时性,工作效率较TCP协
12、议高。FTP协议FTP协议是文件传输协议,英文全称是FileTransferProtocol,应用层协议之一,是TCP/IP协议的重要组成之一,FTP协议分为服务器和客户端两部分,FTP服务器用来存储文件,FTP客户端用来访问FTP服务器上的文件,FTP的传输效率比拟高,所以一般使用FTP来传输大文件。DNS协议DNS协议是域名系统协议,英文全称是DomainNameSystem,它也是应用层的协议之一,DNS协议是一个将域名和IP互相映射的分布式数据库系统。DNS缓存能够加快网络资源的访问。SMTP协议SMTP协议是简单邮件传输协议,英文全称是SimpleMailTransferProtoc
13、ol,应用层协议之一,SMTP主要是用作邮件收发协议,SMTP服务器是遵循SMTP协议的发送邮件服务器,用来发送或中转用户发出的电子邮件SLIP协议SLIP协议是指串行线路网际协议(SerialLineInternetProtocol),是在串行通信线路上支持TCP/IP协议的一种点对点(Point-to-Point)式的链路层通信协议。PPP协议PPP协议是PointtoPointProtocol,即点对点协议,是一种链路层协议,是在为同等单元之间传输数据包而设计的。设计目的主要是用来通过拨号或专线方式建立点对点连接发送数据,使其成为各种主机、网桥和路由器之间简单连接的一种共通的解决方案。网
14、络核心概念传输方式网络根据传输方式能够进行分类,一般分成两种面向连接型和面向无连接型。面向连接型中,在发送数据之前,需要在主机之间建立一条通信线路。面向无连接型则不要求建立和断开连接,发送方可用于任何时候发送数据。接收端也不知道本人何时从哪里接收到数据。分组交换在互联网应用中,每个终端系统都能够相互交换信息,这种信息也被称为报文(Message),报文是一个集大成者,它能够包括你想要的任何东西,比方文字、数据、电子邮件、音频、视频等。为了从源目的地向端系统发送报文,需要把长报文切分为一个个小的数据块,这种数据块称为分组(Packets),也就是讲,报文是由一个个小块的分组组成。在端系统和目的地
15、之间,每个分组都要经过通信链路(communicationlinks)和分组交换机(switchpackets),分组要在端系统之间交互需要经过一定的时间,假如两个端系统之间需要交互的分组为L比特,链路的传输速率为R比特/秒,那么传输时间就是L/R秒。一个端系统需要经过交换机给其他端系统发送分组,当分组到达交换机时,交换机就能够直接进行转发吗?不是的,交换机可没有这么无私,你想让我帮你转发分组?好,首先你需要先把整个分组数据都给我,我再考虑给你发送的问题,这就是存储转发传输存储转发传输存储转发传输指的就是交换机在转发分组的第一个比特前,必需要接遭到整个分组,下面是一个存储转发传输的示意图,能够
16、从图中窥出端倪由图能够看出,分组1、2、3向交换器进行分组传输,并且交换机已经收到了分组1发送的比特,此时交换时机直接进行转发吗?答案是不会的,交换时机把你的分组先缓存在本地。这就和考试作弊一样,一个学霸要经过学渣A给学渣B传答案,学渣A讲,学渣A在收到答案后,它可能直接把卷子传过去吗?学渣A讲,等我先把答案抄完(保存功能)后再把卷子给你。排队时延和分组丢失什么?你以为交换机只能和一条通信链路进行相连?那你就大错特错了,这可是交换机啊,怎么可能只要一条通信链路呢?所以我相信你一定能想到这个问题,多个端系统同时给交换器发送分组,一定存在顺序到达和排队的问题。事实上,对于每条相连的链路,该分组交换
17、时机有一个输出缓存(outputbuffer)和输出队列(outputqueue)与之对应,它用于存储路由器准备发往每条链路的分组。假如到达的分组发现路由器正在接收其他分组,那么新到达的分组就会在输出队列中进行排队,这种等待分组转发所消耗的时间也被称为排队时延,上面提到分组交换器在转发分组时会进行等待,这种等待被称为存储转发时延,所以我们如今了解到的有两种时延,但是其实是有四种时延。这些时延不是一成不变的,其变化程序取决于网络的拥塞程度。由于队列是有容量限制的,当多条链路同时发送分组导致输出缓存无法接受超额的分组后,这些分组会丢失,这种情况被称为丢包(packetloss),到达的分组或者已排
18、队的分组将会被丢弃。下列图讲明了一个简单的分组交换网络在上图中,分组由三位数据平板展示,平板的宽度表示着分组数据的大小。所有的分组都有一样的宽度,因而也就有一样的数据包大小。下面来一个情景模拟:假定主机A和主机B要向主机E发送分组,主机A和B首先通过100Mbps以太网链路将其数据包发送到第一台路由器,然后路由器将这些数据包定向到15Mbps的链路。假如在较短的时间间隔内,数据包到达路由器的速率(转换为每秒比特数)超过15Mbps,则在数据包在链路输出缓冲区中排队之前,路由器上会发生拥塞,然后再传输到链路上。例如,假如主机A和主机B背靠背同时发了5包数据,那么这些数据包中的大多数将花费一些时间
19、在队列中等待。实际上,这种情况与很多普通情况完全类似,例如,当我们排队等候银行出纳员或在收费站前等候时。转发表和路由器选择协议我们刚刚讲过,路由器和多个通信线路进行相连,假如每条通信链路同时发送分组的话,可能会造成排队和丢包的情况,然后分组在队列中等待发送,如今我就有一个问题问你,队列中的分组发向哪里?这是由什么机制决定的?换个角度想问题,路由的作用是什么?把不同端系统中的数据包进行存储和转发。在因特网中,每个端系统都会有一个IP地址,当原主机发送一个分组时,在分组的首部都会加上原主机的IP地址。每一台路由器都会有一个转发表(forwardingtable),当一个分组到达路由器后,路由器会检
20、查分组的目的地址的一部分,并用目的地址搜索转发表,以找出适当的传送链路,然后映射成为输出链路进行转发。那么问题来了,路由器内部是如何设置转发表的呢?具体的我们后面会讲到,这里只是讲个大概,路由器内部也是具有路由选择协议的,用于自动设置转发表。电路交换在计算机网络中,另一种通过网络链路和路由进行数据传输的另外一种方式就是电路交换(circuitswitching)。电路交换在资源预留上与分组交换不同,什么意思呢?就是分组交换不会预留每次端系统之间交互分组的缓存和链路传输速率,所以每次都会进行排队传输;而电路交换会预留这些信息。一个简单的例子帮助你理解:这就好比有两家餐馆,餐馆A需要预定而餐馆B不
21、需要预定,对于能够预定的餐馆A,我们必须先提早与其进行联络,但是当我们到达目的地时,我们能够立即入座并选菜。而对于不需要预定的那家餐馆来讲,你可能不需要提早联络,但是你必须承遭到达目的地后需要排队的风险。下面显示了一个电路交换网络在这个网络中,4条链路用于4台电路交换机。这些链路中的每一条都有4条电路,因而每条链路能支持4条并行的链接。每台主机都与一台交换机直接相连,当两台主机需要通信时,该网络在两台主机之间创立一条专用的端到端的链接(end-to-endconnection)。分组交换和电路交换的比照分组交换的支持者经常讲分组交换不合适实时服务,由于它的端到端时延时不可预测的。而分组交换的支
22、持者却以为分组交换提供了比电路交换更好的带宽分享;它比电路交换愈加简单、更有效,实现成本更低。但是如今的趋势更多的是朝着分组交换的方向发展。分组交换网的时延、丢包和吞吐量因特网能够看成是一种基础设施,该基础设施为运行在端系统上的分布式应用提供服务。我们希望在计算机网络中任意两个端系统之间传递数据都不会造成数据丢失,然而这是一个极高的目的,实践中难以到达。所以,在实践中必需要限制端系统之间的吞吐量用来控制数据丢失。假如在端系统之间引入时延,也不能保证不会丢失分组问题。所以我们从时延、丢包和吞吐量三个层面来看一下计算机网络分组交换中的时延计算机网络中的分组从一台主机(源)出发,经过一系列路由器传输
23、,在另一个端系统中结束它的历程。在这整个传输历程中,分组会涉及到四种最主要的时延:节点处理时延(nodalprocessingdelay)、排队时延(queuingdelay)、传输时延(totalnodaldelay)和传播时延(propagationdelay)。这四种时延加起来就是节点总时延(totalnodaldelay)。假如用dprocdqueuedtransdpop分别表示处理时延、排队时延、传输时延和传播时延,则节点的总时延由下面公式决定:dnodal=dproc+dqueue+dtrans+dpop。时延的类型下面是一副典型的时延分布图,让我们从图中进行分析一下不同的时延类型
24、分组由端系统经过通信链路传输到路由器A,路由器A检查分组头部以映射出适当的传输链路,并将分组送入该链路。仅当该链路没有其他分组正在传输并且没有其他分组排在该该分组前面时,才能在这条链路上自由的传输该分组。假如该链路当前繁忙或者已经有其他分组排在该分组前面时,新到达的分组将会参加排队。下面我们分开讨论一下这四种时延节点处理时延节点处理时延分为两部分,第一部分是路由器会检查分组的首部信息;第二部分是决定将分组传输到哪条通信链路所需要的时间。一般高速网络的节点处理时延都在微妙级和更低的数量级。在这种处理时延完成后,分组会发往路由器的转发队列中排队时延在队列排队转发经过中,分组需要在队列中等待发送,分
25、组在等待发送经过中消耗的时间被称为排队时延。排队时延的长短取决于先于该分组到达正在队列中排队的分组数量。假如该队列是空的,并且当前没有正在传输的分组,那么该分组的排队时延就是0。假如处于网络高发时段,那么链路中传输的分组比拟多,那么分组的排队时延将延长。实际的排队时延可以以到达微秒级。传输时延队列是路由器所用的主要的数据构造。队列的特征就是先进先出,先到达食堂的先打饭。传输时延是理论情况下单位时间内的传输比特所消耗的时间。比方分组的长度是L比特,R表示从路由器A到路由器B的传输速率。那么传输时延就是L/R。这是将所有分组推向该链路所需要的时间。真实情况下传输时延通常也在毫秒到微妙级传播时延从链
26、路的起点到路由器B传播所需要的时间就是传播时延。该比特以该链路的传播速率传播。该传播速率取决于链路的物理介质(双绞线、同轴电缆、光纤)。假如用公式来计算一下的话,该传播时延等于两台路由器之间的距离/传播速率。即传播速率是d/s,其中d是路由器A和路由器B之间的距离,s是该链路的传播速率。传输时延和传播时延的比拟计算机网络中的传输时延和传播时延有时候难以区分,在这里解释一下,传输时延是路由器推出分组所需要的时间,它是分组长度和链路传输速率的函数,而与两台路由器之间的距离无关。而传播时延是一个比特从一台路由器传播到另一台路由器所需要的时间,它是两台路由器之间距离的倒数,而与分组长度和链路传输速率无
27、关。从公式可以以看出来,传输时延是L/R,也就是分组的长度/路由器之间传输速率。传播时延的公式是d/s,也就是路由器之间的距离/传播速率。排队时延在这四种时延中,人们最感兴趣的时延或许就是排队时延了dqueue。与其他三种时延(dproc、dtrans、dpop)不同的是,排队时延对不同的分组可能是不同的。例如,假如10个分组同时到达某个队列,第一个到达队列的分组没有排队时延,而最后到达的分组却要经受最大的排队时延(需要等待其他九个时延被传输)。那么怎样描绘排队时延呢?或许能够从三个方面来考虑:流量到达队列的速率、链路的传输速率和到达流量的性质。即流量是周期性到达还是突发性到达,假如用a表示分
28、组到达队列的平均速率(a的单位是分组/秒,即pkt/s)前面讲过R表示的是传输速率,所以能够从队列中推出比特的速率(以bps即b/s位单位)。假设所有的分组都是由L比特组成的,那么比特到达队列的平均速率是Labps。那么比率La/R被称为流量强度(trafficintensity),假如La/R1,则比特到达队列的平均速率超过从队列传输出去的速率,这种情况下队列趋向于无限增加。所以,设计系统时流量强度不能大于1。如今考虑La/R=1时的情况。流量到达的性质将影响排队时延。假如流量是周期性到达的,即每L/R秒到达一个分组,则每个分组将到达一个空队列中,不会有排队时延。假如流量是突发性到达的,则可
29、能会有很大的平均排队时延。一般能够用下面这幅图表示平均排队时延与流量强度的关系横轴是La/R流量强度,纵轴是平均排队时延。丢包我们在上述的讨论经过中描绘了一个公式那就是La/R不能大于1,假如La/R大于1,那么到达的排队将会无穷大,而且路由器中的排队队列所包容的分组是有限的,所以等到路由器队列堆满后,新到达的分组就无法被包容,导致路由器丢弃(drop)该分组,即分组会丢失(lost)。计算机网络中的吞吐量除了丢包和时延外,衡量计算机另一个至关重要的性能测度是端到端的吞吐量。假设从主机A向主机B传送一个大文件,那么在任何时刻主机B接收到该文件的速率就是瞬时吞吐量(instantaneousth
30、roughput)。假如该文件由F比特组成,主机B接收到所有F比特用去T秒,则文件的传送平均吞吐量(averagethroughput)是F/Tbps。单播、广播、多播和任播在网络通信中,能够根据目的地址的数量对通信进行分类,能够分为单播、广播、多播和任播单播(Unicast)单播最大的特点就是1对1,早期的固定就是单播的一个例子,广播(Broadcast)我们一般小时候经常会跳广播体操,这就是广播的一个事例,主机和与他连接的所有端系统相连,主机将信号发送给所有的端系统。多播(Multicast)多播与广播很类似,也是将消息发送给多个接收主机,不同之处在于多播需要限定在某一组主机作为接收端。任
31、播(Anycast)任播是在特定的多台主机中选出一个接收端的通信方式。固然和多播很类似,但是行为与多播不同,任播是从很多目的机群中选出一台最符合网络条件的主机作为目的主机发送消息。然后被选中的特定主机将返回一个单播信号,然后再与目的主机进行通信。物理媒介网络的传输是需要介质的。一个比特数据包从一个端系统开场传输,经过一系列的链路和路由器,进而到达另外一个端系统。这个比特会被转发了很屡次,那么这个比特经过传输的经过所跨越的媒介就被称为物理媒介(phhysicalmedium),物理媒介有很多种,比方双绞铜线、同轴电缆、多模光纤榄、陆地无线电频谱和卫星无线电频谱。其实大致分为两种:引导性媒介和非引
32、导性媒介。双绞铜线最便宜且最常用的引导性传输媒介就是双绞铜线,多年以来,它一直应用于网。从机到本地交换机的连线超过99%都是使用的双绞铜线,例如下面就是双绞铜线的实物图双绞铜线由两根绝缘的铜线组成,每根大约1cm粗,以规则的螺旋形状排列,通常很多双绞线捆扎在一起构成电缆,并在双绞线的外面套上保护层。一对电缆构成了一个通信链路。无屏蔽双绞线一般常用在局域网(LAN)中。同轴电缆与双绞线类似,同轴电缆也是由两个铜导体组成,借助于这种构造以及特殊的绝缘体和保护层,同轴电缆能够到达较高的传输速率,同轴电缆普遍应用在在电缆电视系统中。同轴电缆常被用户引导型分享媒介。光纤光纤是一种细而柔软的、能够引导光脉
33、冲的媒介,每个脉冲表示一个比特。一根光纤能够支持极高的比特率,高达数十甚至数百Gbps。它们不受电磁干扰。光纤是一种引导型物理媒介,一般长途网络全面使用光纤,光纤也广泛应用于因特网的主干。陆地无线电信道无线电信道承载电磁频谱中的信号。它不需要安装物理线路,并具有穿透墙壁、提供与移动用户的连接以及长距离承载信号的能力。卫星无线电信道一颗卫星电信道连接地球上的两个或多个微博发射器/接收器,它们称为地面站。通信中经常使用两类卫星:同步卫星和近地卫星。电脑基础知识:具体讲明固态硬盘和普通硬盘有什么区别?1、首先讲明什么是硬盘,懂计算机的人就不讲了,这里讲给需要知道的朋友。硬盘在电脑里是整个电脑的存储中
34、心,你的音乐、电影和各种文档等数据都是存储在硬盘上的。硬盘就像人的胃一样,有大有小,一般有160GB、320GB、500GB、1T、2T甚至更高。2、硬盘的分类硬盘有固态硬盘(SSD盘,新式硬盘)、机械硬盘(HDD传统硬盘)和混合硬盘(HHD一块基于传统机械硬盘诞生出来的新硬盘)主要三大类。SSD采用闪存颗粒来存储,HDD采用磁性碟片来存储,混合硬盘(HHD:HybridHardDisk)是把磁性硬盘和闪存集成到一起的一种硬盘。绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。那么为什么会出现这么多类别的硬盘呢?他们有什么同?下面做具体的讲解。纵观硬件发展的步伐,CPU从单核低性能,
35、发展到目前的10核甚至更多核的超高性能。内存容量从几KB发展到如今的8G起步是以前的上万倍,显卡晶体管数量从几百万发展到上百亿,性能提升的幅度之宏大恐怕无法用语言去形容,而且发展到了今天性能照旧飞速增长。但是机械硬盘性能方除了在容量上有较大突破外。在读取性能上的发展到了今天可谓碰到了瓶颈,受限于机械硬盘的构造限制,在读写性能上无法再度提升,因而近年来硬盘都在储存密度上下功夫。因而机械硬盘也成了高性能PC的最后一个短板,直到固态硬盘(SSD)出现的那一天,读写性能的这块短板才真正被补上。固态硬盘是由控制单元和固态存储单元组成的硬盘。固态硬盘的介质分为两种,一种是采用闪存作为介质,另外一种是采用D
36、RAM作为存储介质,目前绝大多数固态硬盘采用的是闪存介质。单元负责存储数据,控制单元负责读取、写入数据。由于固态硬盘没有普通硬盘的机械构造,也不存在机械硬盘的寻道问题,因而系统能够在低于1ms的时间内对任意位置单元完成输入、输出操作。机械硬盘其部件主要由:盘片,磁头,盘片转轴及控制电机,磁头控制器,数据转换器,接口,缓存等几个部分组成。磁头可沿盘片的半径方向运动,加上盘片每分钟数千转的高速旋转,磁头就能够定位在盘片的指定位置上进行数据的读写操作。而混合硬盘则是机械硬盘+固态硬盘相结合,比拟好的兼顾了容量与速度,固然在读写速度上远不如真正固态硬盘。这么讲那就没必要买机械硬盘的,直接换成固态硬盘不
37、就能够了?当然假如你是土豪请能够不考虑使用机械硬盘!应为固态硬盘作为近期几年新兴的存储技术,在价格上较高,一个1T的机械硬盘价格大概在300左右,而一个240GB的固态硬盘的价格就超过了400元甚至更高,因此要让固态硬盘完全代替机械硬盘还言之尚早!所以鉴于成本考虑能够将固态硬盘盒机械硬盘搭配使用,在得到固态硬盘速度的同时还可兼顾机械硬盘的大容量!电脑入门知识:电脑的软件是指什么及怎样分类?计算机软件的概念及分类一、概念:计算机软件(ComputerSoftware)是指计算机系统中的程序、数据及其文档。软件是用户与硬件之间的接口界面。用户主要是通过软件与计算机进行沟通。二、软件的分类1.系统软件指控制和协调计算机及外部设备,支持应用软件开发和运行的系统,是无需用户干涉的各种程序的集合,主要功能是调度,监控和维护计算机系统;负责管理计算机系统中各种独立的硬件,使得它们能够协调工作。2.应用软件在计算机硬件和系统软件的支持下,为解决各类专业和实际问题而设计开发的一类软件。如杀毒软件、文字处理、电子表格、多媒体制作工具、各种工程设计和数学计算软件、模拟经过、辅助设计和管理程序等。3.程序设计语言:人们让计算机完成某项任务的语言1)机器语言:直接执行(效率最高)2)汇编语言:符号语言,需要编译才能执行3)高级语言:接近自然语言(编译方式和解释方式执行常用的电脑基础知识大全
限制150内