两个基本计数原理-ppt课件精品.ppt
《两个基本计数原理-ppt课件精品.ppt》由会员分享,可在线阅读,更多相关《两个基本计数原理-ppt课件精品.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1 1.1 两个基本计数原理两个基本计数原理高二高二 数学备课组数学备课组 世界杯足球赛共有32个队参赛它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名问一共安排了多少场比赛?前4名有多少不同的结果? 要回答这个问题,就要用到排列、组合的知识在运用排列、组合方法时,经常要用到从甲地到乙地,有从甲地到乙地,有3 3条公路,条公路,2 2条铁路,某人条铁路,某人要从甲地到乙地,共有多少种不同的走法?要从甲地到乙地,共有多少种不同的走法?从甲地到乙地,有从甲地到乙地,有3 3条道路,从乙地到丙地有条道路,从乙地到丙地有2 2条
2、道路,那么从甲地经乙地到丙地共有多少种不同条道路,那么从甲地经乙地到丙地共有多少种不同的走法的走法 ?从甲地到乙地,有从甲地到乙地,有3 3条公路,条公路,2 2条铁路,条铁路,某人要从甲地到乙地,共有多少种不同的走法?某人要从甲地到乙地,共有多少种不同的走法? 因为每一种走法都能完成从甲地到乙地这件因为每一种走法都能完成从甲地到乙地这件事,有事,有3 3条公路,条公路,2 2条铁路,所以共有:条铁路,所以共有: 3 32 25 5 (种)(种)甲地甲地乙地乙地公路1公路2公路3铁路1铁路2 完成一件事,有完成一件事,有n类办法类办法. 在第在第1类办法中有类办法中有m1种不同的方法,种不同的
3、方法,在第在第2类方法中有类方法中有m2种不同的方法,种不同的方法,在第在第n类方法中有类方法中有mn种不同的方法,种不同的方法,则完成这件事共有则完成这件事共有 : 2)首先要根据具体的问题确定一个分类标准,在分)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立)各类办法之间相互独立,都能独立的完成这件事都能独立的完成这件事,要,要计算方法种数计算方法种数,只需将各类方法数相加只需将各类方法数相加,因此分类计数原因此分类计数原理又称理又称加法原理加法原理N= m1+m2+ + mn 种不同的方法种不同
4、的方法从甲地到乙地,有从甲地到乙地,有3 3条道路,从乙地到丙地有条道路,从乙地到丙地有2 2条道路,那么从甲地经乙地到丙地共有多少种不同条道路,那么从甲地经乙地到丙地共有多少种不同的走法的走法 ? 这个问题与前一个问题不同在这个问题中,必须经过先从甲地到乙地、再从乙地到丙地两个步必须经过先从甲地到乙地、再从乙地到丙地两个步骤骤,才能从甲地到丙地 因为从甲地到乙地从甲地到乙地有3种走法,从乙地到丙地从乙地到丙地有2种走法,所以从甲地到丙地,共有不同的走法: 3 32 26 6 (种)甲地甲地乙地乙地丙地丙地 完成一件事,需要分成完成一件事,需要分成n个步骤。个步骤。做第做第1步有步有m1种不同
5、的方法,种不同的方法,做第做第2步有步有m2种不同的方法,种不同的方法, ,做第做第n步有步有mn种不同的方法,种不同的方法,则完成这件事共有则完成这件事共有 2)首先要根据具体问题的特点确定一个分步的标准,)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数然后对每步方法计数.1)各个步骤相互依存)各个步骤相互依存,只有各个步骤都完成了只有各个步骤都完成了,这件事这件事才算完成才算完成,将各个步骤的方法数相乘得到完成这件事的将各个步骤的方法数相乘得到完成这件事的方法总数方法总数,又称又称乘法原理乘法原理N= m1m2 mn种不同的方法种不同的方法例例1.1. 书架第1层放有4本不
6、同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架中取1本书,有多少种不同取法?有3类方法,根据分类加法计数原理N=4+3+2=9(2)从书架第1,2,3层各取1本书,有多少种不同取法?分3步完成,根据分步乘法计数原理N=432=24学案学案P46-1P46-1练习练习 要从甲、乙、丙3 3幅不同的画中选出2 2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?分分两两步步完完成成左边左边右边右边甲甲乙乙丙丙乙乙丙丙甲甲丙丙甲甲乙乙3 32 2第一步第一步第二步第二步学案学案P46-2P46-2AB该电路从该电路从A A到到B B共有多少条不同的线路
7、可通电?共有多少条不同的线路可通电?分类完成分步完成解解: 从总体上看由从总体上看由A到到B的通电线路可分二类的通电线路可分二类, 第一类第一类, m1 = 4 条条 第二类第二类, m3 = 22 = 4, 条条 所以所以, 根据加法原理根据加法原理, 从从A到到B共有共有 N = 4 + 4 = 8 条不同的线路可通电条不同的线路可通电.ABm1m2mn.ABm1m2mn点评点评: :乘法原理乘法原理看成看成“串联电路串联电路”加法原理加法原理看成看成“并联电路并联电路”; 如图如图, ,从甲地到乙地有从甲地到乙地有2 2条路可通条路可通, ,从乙地到从乙地到丙地有丙地有3 3条路可通条路
8、可通; ;从甲地到丁地有从甲地到丁地有4 4条路可通条路可通, , 从丁地从丁地到丙地有到丙地有2 2条路可通。从甲地到丙地共有多少种不同的条路可通。从甲地到丙地共有多少种不同的走法?走法?练习学案学案P47-s4P47-s4解解: :从总体上看从总体上看,由甲到丙有两类不同的走法由甲到丙有两类不同的走法, 第一类第一类, 由甲经乙去丙由甲经乙去丙,又需分两步又需分两步, 所以所以 m1 = 23 = 6 种不同的走法种不同的走法; 第二类第二类, 由甲经丁去丙由甲经丁去丙,也需分两步也需分两步, 所以所以 m2 = 42 = 8 种不同的走法种不同的走法; 所以从甲地到丙地共有所以从甲地到丙
9、地共有 N = 6 + 8 = 14 种不同的走法。种不同的走法。 问题问题3 3:加法原理加法原理和和乘法原理乘法原理的共同点是什么?的共同点是什么?不同点什么?不同点什么?加法原理加法原理乘法原理乘法原理相同点相同点它们都是研究完成一件事情它们都是研究完成一件事情, 共有多少种不共有多少种不同的方法同的方法不不 同同 点点方式的不同方式的不同任何一类办法中的任何一类办法中的任任何一个方法都能完成何一个方法都能完成这件事这件事这些方法需要分步这些方法需要分步,各各个步骤顺次相依个步骤顺次相依,且且每每一步都完成了一步都完成了, ,才能才能完成这件事情完成这件事情问题问题4 4:何时用:何时用
10、加法原理、乘法原理加法原理、乘法原理呢呢? ?加法原理加法原理完成一件事情有n类方法,若每一类方法中的任何一种方法均能将这件事情从头至尾完成.乘法原理乘法原理完成一件事情有n个步骤,若每一步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事.分类要做到“不重不漏”分步要做到“步骤完整”练习:练习:三个比赛项目,六人报名参加。三个比赛项目,六人报名参加。)每人参加一项有多少种不同的方法?)每人参加一项有多少种不同的方法?)每项人,且每人至多参加一项,有多)每项人,且每人至多参加一项,有多少种不同的方法?少种不同的方法?)每项人,每人参加的项数不限,有多)每
11、项人,每人参加的项数不限,有多少种不同的方法?少种不同的方法?729366 5 4120 36216例例1 用用0,1,2,3,4,5这六个数字这六个数字,(1)可以组成多少个各位数字不允许重复的三位的奇数可以组成多少个各位数字不允许重复的三位的奇数?(2)可以组成多少个各位数字不重复的小于可以组成多少个各位数字不重复的小于1000的自然的自然数数?(3)可以组成多少个大于可以组成多少个大于3000,小于小于5421且各位数字不且各位数字不允许重复的四位数允许重复的四位数?一、排数字问题一、排数字问题二、映射个数问题二、映射个数问题:例例2 设设A=a,b,c,d,e,f,B=x,y,z,从从
12、A到到B共有多共有多少种不同的映射少种不同的映射?三、染色问题三、染色问题:n例例3 有有n种不同颜色为下列两块广告牌着色种不同颜色为下列两块广告牌着色,要求在要求在四个区域中相邻四个区域中相邻(有公共边界有公共边界)区域中不用同区域中不用同一种颜色一种颜色.n(1)若若n=6,为为(1)着色时共有多少种方法着色时共有多少种方法?n(2)若为若为(2)着色时共有着色时共有120种不同方法种不同方法,求求nn n n n (1) (2) 、如图、如图,要给地图要给地图A、B、C、D四个区域分四个区域分别涂上别涂上3种不同颜色中的某一种种不同颜色中的某一种,允许同一种颜允许同一种颜色使用多次色使用
13、多次,但相邻区域必须涂不同的颜色但相邻区域必须涂不同的颜色,不不同的涂色方案有多少种?同的涂色方案有多少种?解解: 按地图按地图A、B、C、D四个区域依次分四个区域依次分四步完成四步完成, 第一步第一步, m1 = 3 种种, 第二步第二步, m2 = 2 种种, 第三步第三步, m3 = 1 种种, 第四步第四步, m4 = 1 种种,所以根据乘法原理所以根据乘法原理, 得到不同的涂色方案得到不同的涂色方案种数共有种数共有 N = 3 2 11 = 6 种。种。 、如图、如图,要给地图要给地图A、B、C、D四个区域分四个区域分别涂上别涂上3种不同颜色中的某一种种不同颜色中的某一种,允许同一种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两个 基本 计数 原理 ppt 课件 精品
限制150内