高二数学知识点总结(15篇).docx
《高二数学知识点总结(15篇).docx》由会员分享,可在线阅读,更多相关《高二数学知识点总结(15篇).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学知识点总结(15篇)高二数学知识点总结(15篇)总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能够使我们更有效率,让我们抽出时间写写总结吧。总结怎么写才是正确的呢?下面是我帮大家整理的高二数学知识点总结,欢迎阅读,希望大家能够喜欢。高二数学知识点总结1课内重视听讲,课后及时温习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比拟本人的解题思路与老师所讲有哪些不同。十分要捉住基础知识和基本技能的学习,课后要及时温习不留疑点。首先要在做各种习题之前将教师所讲的知识点回
2、忆一遍,正确把握各类公式的推理经过,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于考虑,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于本人的思路不清,一时难以解出,应让本人冷静下来认真分析题目,尽量本人解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入本人的知识体系。适当多做题,养成良好的解题习惯。要想学好数学,多做题是难免的,熟悉把握各种题型的解题思路。刚开场要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高本人的分析、解决能力,把握一般的解题规律。对于一些易错题,可备有错题集,
3、写出本人的解题思路和正确的解题经过两者一起比拟找出本人的错误所在,以便及时更正。在平常要养成良好的解题习惯。让本人的精神高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自若。实践证实:越到关键时候,你所表现的解题习惯与平常练习无异。假如平常解题时随意、粗心、大意等,往往在大考中充分暴露,故在平常养成良好的解题习惯是非常重要的。调整心态,正确对待考试。首先,应把主要精神放在基础知识、基本技能、基本方法这三个方面上,由于每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真考虑,尽量让本人理出眉目,做完题后要总结归纳。调整好本人的心态,使本人在任何时候
4、镇静,思路有条不紊,克制浮躁的情绪。十分是对本人要有自信心,永远鼓励本人,除了本人,谁也不能把我打倒,要有本人不垮,谁也不能打垮我的自豪感。在考试前要做好准备,练练常规题,把本人的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使本人的水平正常甚至超常发挥。高二数学知识点总结2用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,假如抽样的方法比拟合理,那么样本能够反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。固然我们用样本数据得到的
5、分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,十分是当样本量很大时,它们确实反映了总体的信息。4.(1)假如把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)假如把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分中的科学道理高二数学知识点总结31.1柱、锥、台、球的构造特征1.2空间几何体的三视图和直观图11三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44
6、斜二测画法的步骤:(1).平行于坐标轴的线仍然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的外表积与体积(一)空间几何体的外表积1棱柱、棱锥的外表积:各个面面积之和2圆柱的外表积3圆锥的外表积4圆台的外表积5球的外表积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积高二数学必修二知识点:直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通
7、常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母、等表示,如平面、平面等,可以以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。3三个公理:(1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为ALBL=LAB公理1作用:判定直线能否在平面内(2)公理2:过不在一条直线上的三点,有且只要一个平面。符号表示为:A、B、C三点不共线=有且只要一个平面,使A、B、C。公理2作用:确定一个平面的根据。(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线。
8、符号表示为:P=L,且PL公理3作用:断定两个平面能否相交的根据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只要一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线相互平行。符号表示为:设a、b、c是三条直线abcb强调:公理4本质上是讲平行具有传递性,在平面、空间这个性质都适用。公理4作用:判定空间两条直线平行的根据。3等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4注意点:a与b所成的角的大小只由a、b的互相位置来确定,与O的选择无关
9、,为了简便,点O一般取在两直线中的一条上;两条异面直线所成的角(0,);当两条异面直线所成的角是直角时,我们就讲这两条异面直线相互垂直,记作ab;两条直线相互垂直,有共面垂直与异面垂直两种情形;计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.32.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内有无数个公共点(2)直线与平面相交有且只要一个公共点(3)直线在平面平行没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a来表示aa=Aa2.2.直线、平面平行的断定及其性质2.2.1直线与平面平行的断定1、直线与平
10、面平行的断定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:ab=aab2.2.2平面与平面平行的断定1、两个平面平行的断定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:abab=Pab2、判定两平面平行的方法有三种:(1)用定义;(2)断定定理;(3)垂直于同一条直线的两个平面平行。2.2.32.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:aaab=b作用:利用该定理可解决直线间的平行问题。
11、2、定理:假如两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:=aab=b作用:能够由平面与平面平行得出直线与直线平行2.3直线、平面垂直的断定及其性质2.3.1直线与平面垂直的断定1、定义假如直线L与平面内的任意一条直线都垂直,我们就讲直线L与平面相互垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。2、断定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点:a)定理中的“两条相交直线这一条件不可忽视;b)定理体现了“直线与平面垂直与“直线与直线垂直相互转化的数学思想。2.3.2平面与平面垂直的断定1、二面
12、角的概念:表示从空间一直线出发的两个半平面所组成的图形2、二面角的记法:二面角-l-或-AB-3、两个平面相互垂直的断定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.32.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。高二数学知识点总结41、学会三视图的分析:2、斜二测画法应注意的地方:1在已知图形中取相互垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使xoy=45或135;2平行于x轴的线段长不变,平行于y轴的线段长减半。3直观图中的45度原图中就是90度,直观
13、图中的90度原图一定不是90度。3、表侧面积与体积公式:柱体:外表积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h锥体:外表积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体外表积:S=S侧+S上底S下底侧面积:S侧=球体:外表积:S=;体积:V=4、位置关系的证实主要方法:注意立体几何证实的书写1直线与平面平行:线线平行线面平行;面面平行线面平行。2平面与平面平行:线面平行面面平行。3垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线5、求角:步骤。找或作角;。求角异面直线所成角的求法:平移法:平移直线,构造三角形;直线与平面所成的角:直线与射影所成的
14、角高二数学知识点总结5排列组合排列P-和顺序有关组合C-不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素根据一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个
15、元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/(n-m)!_!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为n!/(n1!_2!_._k!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)Pnm=n(n-1).(n-m+1);Pnm=n!/(
16、n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标)Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m20xx-07-0813:30公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R介入选择的元素个数!-阶乘,如9!=9_从N倒数r个,表达式应该为n_n-1)_n-2).(n-r+1);由于从n到(n-r+1)个数为n-(n-r+1)=r高二数学知识点总
17、结6一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,假如把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。3、直线方程:点斜式:直线过点斜率为,则直线方程为,斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两
18、条平行线与的距离是6、圆的标准方程:.圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,假如只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:方程(ab0)注意还有一个;定义:|PF1|+|PF2|=2a2c;e=长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:方程(a,b0)注意还有一个
19、;定义:|PF1|-|PF2|=2a高二数学知识点总结7等差数列对于一个数列an,假如任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。那么,通项公式为,其求法很重要,利用了“叠加原理的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。此外,数列前n项的和,其详细推导方式较简单,可用以上类似的叠加的方法,可以以采取迭代的方法,在此,不再复述。值得讲明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点能够
20、使很多涉及Sn的数列问题迎刃而解。等比数列对于一个数列an,假如任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理的思想:a2=a1_,a3=a2_,a4=a3_,an=an-1_,将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。此外,当q=1时该数列的前n项和Tn=a1_当q1时该数列前n项的和Tn=a1_1-q(n)/(1-q).高二数学知识点总结81.万能公式令tan(a/2)
21、=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2)2.辅助角公式asint+bcost=(a2+b2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)sina*cosb=sin(a+b)+sin(a-b)/2cosa*sinb=sin(a+b)-sin(a-b)/2cosa*cosb=cos(a+b)+cos(a-b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 知识点 总结 15
限制150内