人教版第二十六章反比例函数教案全章.pdf
《人教版第二十六章反比例函数教案全章.pdf》由会员分享,可在线阅读,更多相关《人教版第二十六章反比例函数教案全章.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第二十六章反比例函数2611 反比例函数的意义一、教学目标1使学生理解并掌握反比例函数的概念2能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1重点: 理解反比例函数的概念,能根据已知条件写出函数解析式2难点: 理解反比例函数的概念3难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11 章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky,等号左边是函数y,等号右边是一个分式,自
2、变量x 在分母上,且x 的指数是1,分子是不为0 的常数 k;看自变量 x 的取值范围,由于x 在分母上,故取x0 的一切实数;看函数y 的取值范围,因为k0,且 x0,所以函数值y 也不可能为0。讲解时可对照正比例函数ykx(k0),比较二者解析式的相同点和不同点。(3)xky(k0)还可以写成1kxy(k0)或 xyk(k 0)的形式三、课堂引入1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3、阅读书P2 思考题四、例习题分析例 1P3 分析:因为y 是 x 的反比例函数,所以先设xky,再把 x2 和
3、 y6 代入上式求出常数 k,即利用了待定系数法确定函数解析式。例 1(补充)下列等式中,哪些是反比例函数(1)3xy( 2)xy2(3) xy21 (4)25xy(5)xy23(6)31xy(7)yx4 分析:根据反比例函数的定义,关键看上面各式能否改写成xky(k 为常数, k0)的形式, 这里(1)、 (7)是整式, (4)的分母不是只单独含x,(6)改写后是xxy31,分子不是常数,只有(2)、( 3)、( 5)能写成定义的形式例 2(补充)当m 取什么值时,函数23)2(mxmy是反比例函数?学习必备欢迎下载分析:反比例函数xky( k0)的另一种表达式是1kxy(k0),后一种写法
4、中 x 的次数是 1,因此 m 的取值必须满足两个条件,即m20 且 3m2 1,特别注意不要遗漏k0 这一条件,也要防止出现3 m21 的错误。解得 m 2 例 3 (补充)已知函数y y1y2,y1与 x 成正比例, y2与 x 成反比例,且当x1 时,y4;当 x2 时, y5 (1)求 y 与 x 的函数关系式(2)当 x 2时,求函数y 的值分析:此题函数y 是由 y1和 y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、 y2与 x 的函数关系式, 再代入数值, 通过解方程或方程组求出比例系数的值。这里要注意y1与 x 和 y2与 x 的函数关系中的比例系数不一定相
5、同,故不能都设为k,要用不同的字母表示。略解:设y1k1x(k10),xky22( k20),则xkxky21,代入数值求得k12,k22,则xxy22,当 x 2 时, y 5 五、随堂练习1苹果每千克x 元,花 10 元钱可买y 千克的苹果,则y 与 x 之间的函数关系式为2若函数28)3(mxmy是反比例函数,则m 的取值是3矩形的面积为4,一条边的长为x,另一条边的长为y,则 y 与 x 的函数解析式为4 已知 y 与 x 成反比例,且当 x 2时, y3, 则 y 与 x 之间的函数关系式是,当 x 3 时, y5函数21xy中自变量x 的取值范围是六、课后练习已知函数yy1y2,
6、y1与 x1 成正比例, y2与 x 成反比例,且当x1 时, y0;当 x4 时, y9,求当 x 1 时 y 的值答案: y4 2612 反比例函数的图象和性质(1)一、教学目标1会用描点法画反比例函数的图象2结合图象分析并掌握反比例函数的性质3体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1重点: 理解并掌握反比例函数的图象和性质学习必备欢迎下载2难点: 正确画出图象,通过观察、分析,归纳出反比例函数的性质3难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。反比例函数xky( k0)自变量的取值范围是x0,
7、所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。 连线时要告诉学生用平滑的曲线连接,不能用折线连接。教学时,老师要带着学生一起画,注意引导,及时纠错。在探究反比例函数的性质时,可结合正比例函数y kx(k 0)的图象和性质,来帮助学生观察、 分析及归纳, 通过对比, 能使学生更好地理解和掌握所学的内容。这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的; 反之, 双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。四、课堂引入提出问题:1一次函数ykxb(k、b 是常数, k0)的图象是什么?其性质有
8、哪些?正比例函数 ykx (k0)呢?2、画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3、反比例函数的图象是什么样呢? 五、例习题分析例 2见教材P4,用描点法画图,注意强调:(1)列表取值时, x0,因为 x0 函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于 x0,k0,所以 y0,函数图象永远不会与x 轴、 y 轴相交,只是无
9、限靠近两坐标轴例 1(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m 值,并指出在每个象限内y 随 x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy(k0)自变量x的指数是 1,二是根据反比例函数的性质:当图象位于第二、四象限时,k 0,则m10,不要忽视这个条件略解:32)1(mxmy是反比例函数m23 1,且 m1 0 又图象在第二、四象限m1 0 解得2m且 m1 则2m例 2(补充)如图,过反比例函数xy1(x0)的图象上任意两点A、B 分别作 x 轴的垂线,垂足分别为C、D,连接 OA 、OB,设 AOC 和 BOD 的面积分别是S1、S2
10、,比较它们的大小,可得()学习必备欢迎下载(A)S1S2(B)S1S2 (C)S1S2(D)大小关系不能确定分析:从反比例函数xky(k0)的图象上任一点P(x,y)向 x 轴、y 轴作垂线段,与 x 轴、 y 轴所围成的矩形面积kxyS,由此可得S1S2 21,故选 B 五、随堂练习1已知反比例函数xky3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y 随 x 的增大而增大2函数 y axa 与xay( a0)在同一坐标系中的图象可能是()3在平面直角坐标系内,过反比例函数xky(k0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、 y
11、轴所围成的矩形面积是6,则函数解析式为七、课后练习1若函数xmy)12(与xmy3的图象交于第一、三象限,则m 的取值范围是2 反比例函数xy2, 当 x 2 时, y; 当 x 2 时; y 的取值范围是;当 x 2时; y 的取值范围是3 已知反比例函数yaxa()226,当x0时, y 随 x 的增大而增大,求函数关系式答案: 3xya25,52612 反比例函数的图象和性质(2)一、教学目标学习必备欢迎下载1使学生进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法二、重点、难点1重
12、点: 理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题2难点: 学会从图象上分析、解决问题3难点的突破方法:在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。三、课堂引入复习上节课所学的内容1什么是反比例函数?2反比例函数的图象是什么?有什么性质?四、例习题分析例 3见教材P7 分析:反比例函数xky的图象位置及y 随 x 的变化情况取决于常数k 的符号,因此要先求常数k,而题中已知图象经过点
13、A(2,6),即表明把A 点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。例 4见教材P7 例 1(补充)若点A( 2,a)、 B( 1,b)、 C(3,c)在反比例函数xky(k0)图象上,则a、b、 c 的大小关系怎样?分析:由k0 可知,双曲线位于第二、四象限,且在每一象限内,y 随 x 的增大而增大,因为 A、B 在第二象限,且1 2,故 ba0;又 C 在第四象限,则c0,所以ba0c 说明:由于双曲线的两个分支在两个不同的象限内,因此函数y 随 x 的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k0 时 y 随 x 的增大而增大,就会误认为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 第二 十六 反比例 函数 教案
限制150内