人教版七年级数学下册全册导学案修改篇.pdf
《人教版七年级数学下册全册导学案修改篇.pdf》由会员分享,可在线阅读,更多相关《人教版七年级数学下册全册导学案修改篇.pdf(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载课题:5.1.1 相交线【学习目标】1. 了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。2. 理解对顶角性质的推导过程,并会用这个性质进行简单的计算。3. 通过辨别对顶角与邻补角,培养识图的能力。【学习重点】 邻补角和对顶角的概念及对顶角相等的性质。【学习难点】 在较复杂的图形中准确辨认对顶角和邻补角。【自主学习】1. 阅读课本 P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法 ?培养哪些良好习惯 ? , 2. 准备一张纸片和一把剪刀,用剪刀将纸片剪开, 观察剪纸过程 , 握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀两刀刃之间的角引发了什
2、么变化? . 如果改变用力方向, 将两个把手之间的角逐渐变大, 剪刀两刀刃之间的角又发生什么了变化? .3. 如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题 , 阅读课本 P2内容, 探讨两条相交线所成的角有哪些?各有什么特征 ? 【合作探究】1. 画直线 AB 、CD相交于点 O,并说出图中 4 个角, 两两相配共能组成几对角 ? 各对角的位置关系如何 ?根据不同的位置怎么将它们分类?例如: (1) AOC和 BOC有一条公共边OC ,它们的另一边互为,称这两个角互为。用量角器量一量这两个角的度数,会发现它们的数量关系是(2) AOC和 BOD (有或没有
3、)公共边,但AOC的两边分别是BOD两边的,称这两个角互为。用量角器量一量这两个角的度数,会发现它们的数量关系是。2. 根据观察和度量完成下表: 两直线相交所形成的角分类位置关系数量关系4321ODCBA3. 用语言概括邻补角、对顶角概念. 的两个角叫邻补角。的两个角叫对顶角。4. 探究对顶角性质 . 在图 1 中, AOC 的邻补角有两个,是和 ,根据“同角的补角相等” , 可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质: 对顶角相等.注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系, 对顶角_ O_ D_ C_ B_ A学习必备欢迎下载性质是确定为对顶角的两
4、角的数量关系. 你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?【巩固运用】1. 例题: 如图, 直线 a,b 相交, 1=40, 求2, 3, 4 的度数 .提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?, 规范地写出求解过程 . 2. 练习: 完成课本 P3练习. 【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决)【达标测评】1.如图所示 ,1 和2 是对顶角的图形有 ( )12121221 A.1个 B.2个 C.3个 D.4个2. 如图(1), 三条直线 AB,CD,EF相交于一点 O, AOD的对顶角是 _,AO
5、C的邻补角是_,若 AOC=50 , 则 BOD=_, COB=_ ,AOE+ DOB+ COF=_ 。OFEDCBA3. 如图,直线 AB,CD相交于 O,OE平分 AOC, 若AOD- DOB=50 ,? 求EOB 的度数. OEDCBA4. 如图, 直线 a,b,c 两两相交 , 1=23, 2=68, 求4 的度数cba34125. 若 4 条不同的直线相交于一点, 图中共有几对对顶角 ?若 n 条不同的直线相交于一点呢? ba4321学习必备欢迎下载ODCBA课题:5.1.2 垂线( 1)【学习目标】1理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2掌握点到直线的
6、距离的概念,并会度量点到直线的距离。3掌握垂线的性质,并会利用所学知识进行简单的推理。【学习重点】 垂线的定义及性质。【学习难点】 垂线的画法【学具准备】 相交线模型,三角尺,量角器【自主学习】1如图,若1=60,那么 2=_、 3=_、 4=_ 2改变上图中 1 的大小,若 1=90,请画出这种图形,并求出此时2、3、 4的大小。【合作探究】1. 阅读课本 P3的内容,回答上面所画图形中两条直线的关系是_ , 知道两条直线互相_是两条直线相交的特殊情况。2. 用语言概括垂直定义两条直线相交,所成四个角中有一个角是_时,我们称这两条直线 _ 其中一条直线是另一条的 _,他们的交点叫做 _。3垂
7、直的表示方法:垂 直 用 符 号 “ ” 来 表 示 , 若 “ 直 线AB垂 直 于 直 线CD ,垂 足 为O ”, 则 记 为_ ,并在图中任意一个角处作上直角记号,如下图。4.垂直的推理应用:(1) AOD=90 ()ABCD ()(2) ABCD () AOD=90()5垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“ 垂直” 的实例?【画图实践】1用三角尺或量角器画已知直线L 的垂线 . (1)已知直线 L,画出直线 L 的垂线,能画几条 ? L 小组内交流 ,明确直线 L 的垂线有 _ 条,即存在 ,
8、但位置有不 _性。(2)怎样才能确定直线L 的垂线位置呢 ? 在直线 L 上取一点 A,过点 A 画 L 的垂线 , 能画几条 ?再经过直线 L 外一点 B 画直线 L 的垂线,这样的垂线能画出几条 ? B AL L 学习必备欢迎下载E(3)ODCBA(2)ODCBA(1)ODCBA从中你能得出什么结论 ? _ 2变式训练 ,请完成课本 P5练习第 2 题的画图。画完图后,归纳总结 :画一条射线或线段的垂线, 就是画它们所在 _的垂线 . 【反思总结】本节课你你有那些收获?还有什么疑难需老师或同学帮助解决?【达标测评】(有困难同学可以选做)(一)判断题 . 1.两条直线互相垂直 ,则所有的邻补
9、角都相等 .( ) 2.一条直线不可能与两条相交直线都垂直.( ) 3.两条直线相交所成的四个角中,如果有三个角相等 ,那么这两条直线互相垂直 .( ) 4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题 . 1.如图 1,OAOB,ODOC,O 为垂足 ,若AOC=35 ,则BOD=_. 2.如图 2,AOBO,O 为垂足 ,直线 CD 过点 O,且BOD=2AOC,则BOD=_. 3.如图 3,直线 AB、CD 相交于点 O,若EOD=40 ,BOC=130 ,那么射线 OE 与直线 AB 的位置关系是 _. (三)解答题 . 1.已知钝角 AOB,点 D 在
10、射线 OB 上. (1)画直线 DEOB (2)画直线 DFOA,垂足为 F. 2.已知:如图,直线 AB,射线 OC 交于点 O,OD 平分 BOC,OE 平分 AOC.试判断 OD 与 OE的位置关系 . 3.你能用折纸方法过一点作已知直线的垂线吗? EODCBA学习必备欢迎下载课题:5.1.2 垂线( 2)【学习目标】1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念 , 培养学生用几何语言准确表达的能力。2.了解垂线段的概念 ,了解垂线段最短的性质 ,体会点到直线的距离的意义, 并会度量点到直线的距离。【自主学习】1.上学期我们学习过“什么什么最短”的几何知识,还记得吗
11、 ?。2.思考课本 P5图 5.1-8 中提出问题 :要把河中的水引到农田P 处, 如何挖渠能使渠道最短? 3.自学课本 P5-6页的内容后,你能解决2 中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田 P, 另一个端点就是直线L 上的某个点。那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考 :在连接直线 L 外一点 P与直线 L 上各点的线段中 ,哪一条最短 ?)2.学具感受自制学具:在硬纸板上固定木条L,L 外有一点 P,另一根可以转动的木条 a一端固定在点 P, 使木条 a 与 L
12、 相交, 左右摆动木条 a,会发现它们的交点A 随之变化 ,线段 PA 长度也随之变化 .观察:当PA 最短时 ,直线 a 与 L 的位置关系如何 ?用三角尺检验一下。3.画图验证(1)画直线 L,在 L 外取一点 P; (2)过 P点出 POL,垂足为 O; (3)点 A1,A2,A3在 L 上,连接 PA、PA2、PA3;(4)用度量法比较线段PO、PA1、PA2、PA3的大小, .得出线段最小。4.归纳结论 . 连接直线外一点与直线上各点的所有线段中, .简单说成 : .5.知识类比(1)垂线段与垂线有何区别联系?(2)垂线段与线段有何区别与联系?6. 解决问题:此时你会解决课本P5图
13、5.1-8 中提出的问题吗?在图形中画出“最短渠道”的位置。7. 探究“点到直线的距离”?定义: (1) 学习课本 P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。_ l_ P_ a_ A学习必备欢迎下载EDCBA(2)对照课本 P5图 5.1-9,回答线段 PO、PA1、PA2、PA3、PA4中,哪一条或几条线段的长度是点 P到直线 L 的距离?(3) 如果课本 P5图 5.1-8 中比例尺为 1:100000,试计算农田 P到小河的距离有多远?【运用举例】例 1:判断对错,并说明理由:. (1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2
14、)如图,线段 AE 是点 A 到直线 BC 的距离 . (3)如图,线段 CD 的长是点 C 到直线 AB 的距离 . 例:2:已知直线 a、b,过点 a上一点 A 作 ABa,交 b 于点 B,过 B 作 BCb 交 a 于点 C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离. baCBA【反思总结】本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下。【达标测评】1.如图,ACBC,C为垂足 ,CDAB,D 为垂足 ,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6, 那么点C 到 AB 的距离是 _,点 A 到 BC 的距离是 _, 点 B
15、 到 CD 的距离是 _,A、B两点的距离是 _. DCBAFEDCBA2.如图,在线段 AB、AC、AD、AE、AF 中 AD 最短.小明说垂线段最短 , 因此线段 AD 的长是点 A 到 BF 的距离 ,对小明的说法 ,你认为对吗?3.用三角尺画一个是30 的AOB,在边 OA 上任取一点 P, 过 P作 PQOB, 垂足为 Q,量一量 OP的长,你发现点 P 到 OB 的距离与 OP 长的关系吗 ? 学习必备欢迎下载课题:5.1.3同位角、内错角、同旁内角【学习目标】1. 理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.2. 通过比较、观察、掌握同位角、内错
16、角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角 . 【学习重点】 同位角、内错角、同旁内角的识别。【学习难点】 较复杂图形中同位角、内错角、同旁内角的识别。【自主学习】1. 指出右图中所有的邻补角和对顶角?2. 图中的 1 与5,3 与5,3 与6 是邻补角或对顶角吗 ? 若都不是,请自学课本P6内容后回答它们各是什么关系的角? 【合作探究】1. 如图(1) ,将木条 a,b与木条 c 钉在一起,若把它们看成三条直线则该图可说成“直线和直线与直线相交”也可以说成“两条直线,被第三条直线所截” . 构成了小于平角的角共有个,通常将这种图形称作为 “三线八角”。其中直线,称为两被截
17、线,直线称为截线。2. 如图( 3)是“直线,被直线所截”形成的图形(1)1 与5 这对角在两被截线 AB,CD的,在截线 EF 的,形如“” 字型 . 具有这种关系的一对角叫同位角 。(2)3 与5 这对角在两被截线 AB,CD的,在截线 EF的,形如“” 字型 . 具有这种关系的一对角叫内错角 。(3)3 与6 这对角在两被截线AB,CD的,在截线 EF的,形如“” 字型. 具有这种关系的一对角叫 同旁内角 。3. 找出图( 3)中所有的同位角、内错角、同旁内角。4. 讨论与交流:(1) “同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?(2)归纳总结同位角、内错角、
18、同旁内角的特征:同位角: “F” 字型, “同旁同侧”“三线八角”内错角: “Z” 字型, “之间两侧”同旁内角:“U ” 字型, “之间同侧”【运用举例】例 1. 如图(2)中 1 与2,3 与4, 1 与4 分别是哪两条直线被哪一条直线所截形成的什么角?例 2. 课本 P7的例题学习必备欢迎下载【巩固练习】课本 P7练习 1,2 【达标测评】1. 如图( 4) ,下列说法不正确的是()A、1 与2 是同位角 B 、2 与3 是同位角C、1 与3 是同位角 D 、1 与4 不是同位角2. 如图( 5) ,直线 AB 、CD被直线 EF所截, A和是同位角, A和是内错角 ,A和是同旁内角 .
19、3. 如图( 6), 直线 DE截 AB, AC, 构成八个角 : 指出图中所有的同位角、内错角、同旁内角. A与5, A与 6, A与8, 分别是哪一条直线截哪两条直线而成的什么角?4. 如图( 7) ,在直角ABC中, C 90,DE AC于 E,交 AB于 D . 指出当 BC 、DE被 AB所截时, 3 的同位角、内错角和同旁内角.试说明 12 3 的理由 . (提示:三角形内角和是1800)学习必备欢迎下载aCB课题: 5.2.1 平行线【学习目标】1. 了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论 . 2. 会用符号语言表示平行公理推
20、论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线. 【学习重点】 探索和掌握平行公理及其推论.【学习难点】 对平行线本质属性的理解 , 用几何语言描述图形的性质.【学前准备】 分别将木条 a、b 与木条 c 钉在一起 , 做成图示的教具 .【问题探索】1. 两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内 , 两条直线除了相交外 , 还有别的位置关系吗 ?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?4自我演示 . 顺时针转动木条b 两圈, 然后思考
21、 : 把 a、b 想像成两端可以无限延伸的两条直线, 顺时针转动 b 时, 直线 b 与直线 a 的交点位置将发生什么变化?在这个过程中 , 有没有直线 b 与 a 不相交的位置 ?5. 同学交流并形成共识 . 转动 b 时, 直线 b 与 c 的交点从在直线 a 上 A点向左边距离 A点很远的点逐步接近A点,并垂合于 A点, 然后交点变为在A点的右边 , 逐步远离 A点. 继续转动下去 ,b 与 a 的交点就会从 A点的右边又转动 A点的左边可以想象一定存在一个直线b 的位置 , 它与直线 a 左右两旁都如下图cba【自主学习】 - 平行线定义、表示法1. 结合演示的结论 , 用自己的语言描
22、述平行线的认识:平行线是同一的两条直线平行线是交点的两条直线2尝试用数学语言描述平行定义特别注意:直线 a 与 b 是平行线 , 记作“”, 这里“”是平行符号 . 思考: 如何确定两条直线的位置关系?.【合作探究】 - 画图、观察、探索平行公理及平行公理推论1. 在转动教具木条 b 的过程中 , 有几个位置能使 b 与 a 平行? 2. 用直线和三角尺画平行线. 已知: 直线 a, 点 B,点 C. (1) 过点 B画直线 a 的平行线 , 能画几条 ? (2) 过点 C画直线 a 的平行线 , 它与过点 B的平行线平行吗 ? 3. 观察画图、归纳平行公理及推论. (1) 对照垂线的第一性质
23、说出画图所得的结论. 平行公理 : (2) 比较平行公理和垂线的第一条性质. cbaBA学习必备欢迎下载共同点 : 都是 “” , 这表明与已知直线平行或垂直的直线存在并且是的. 不同点 : 平行公理中所过的“一点”要在已知直线 ,两垂线性质中对“一点”没有限制, 可在直线 ,也可在直线 . 4. 探索平行公理的推论 . (1) 直观判定过 B点、C点的 a 的平行线 b、c 是互相 . (2) 从直线 b、c 产生的过程说明直线b直线 c. (3) 用三角尺与直尺用平推方法验证bc. (4) 用数学语言表达这个结论用符号语言表达为 : 如果那么(5) 简单应用 . 将一张长方形纸片对折两次,
24、得到三条折痕,这三条折痕有什么关系,请说明理由。【达标测评】一、填空题 . 1. 在同一平面内 , 两条直线的位置关系有_2、两条直线L1与 L2相交点A,如果L1L,那么L2与 L() ,这是因为() 。3. 在同一平面内 , 一条直线和两条平行线中一条直线相交, 那么这条直线与平行线中的另一边必_.4. 两条直线相交 , 交点的个数是 _,两条直线平行 , 交点的个数是 _个. 二、判断题 . 1. 不相交的两条直线叫做平行线.( ) 2. 如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( ) 3. 过一点有且只有一条直线平行于已知直线.( ) 三、解答题 .
25、1. 读下列语句 , 并画出图形后判断 . (1) 直线 a、b互相垂直 , 点 P是直线 a、b 外一点 , 过 P点的直线 c 垂直于直线 b. (2) 判断直线 a、c 的位置关系 , 并借助于三角尺、直尺验证. 2. 试说明三条直线的交点情况, 进而判定在同一平面内三条直线的位置情况.课题: 5.2.2 平行线的判定【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。【学习重点】 在观察实验的基础上进行公理的概括与定理的推导【学习难点】 定理形成过程中的逻辑推理及其书面表达。【学具准备】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 全册导学案 修改
限制150内