《我国经济周期波动的非对称性和持续性研究.doc》由会员分享,可在线阅读,更多相关《我国经济周期波动的非对称性和持续性研究.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2007 年第 4 期 我国经济周期波动的非对称性和持续性 研究 * 陈浪南 刘宏伟 内容提要 : 本文利用 1979 年至 2004 年之间中国 GDP 季度数据 , 采用三区制马尔可夫 均值和方差转 移的二阶自回归 ( MSMV ( 3) AR ( 2) ) 模型和贝叶斯 Gibbs 抽样非参数估计方 法 , 对我国经济周期波动的非对称性和持续 性进行了实证分析 。 实证结果 表明 , MSMV ( 3) AR( 2) 模型对我国经济状况提供了很好的拟合 , 显著支持增长率序列具有三区制状 态 : 低速增长阶段 , 适速增长阶段和高速增长阶段 。 我国经济周期的非对称性主要体现在 各个增长
2、阶段的均值 、 方差 、 阶段性之间的转移概率的不同 。 我国经济周期的持续性主要 体现在各个增长阶段的自维持概率和阶段性之间的转移概率的不同 。 此 外 , 我国经济 适 速增长阶段 的稳定性最高 , 高速增长阶段 的平均持续期最长 。 关键词 : 经济周期 非对称性 持续性 Markov Switching 模型 Gibbs 抽样 一、引 言 经济周期是指单个经济总量增长指标围绕其长期趋势的扩张和收缩过程而体现出的周期性波 动。自从 Burns and Mitchell ( 1946) 提出了 经济周期阶段的具体描述以后 , 有关经济周期波动的研 究取得了较大的突破。 Klein and
3、Moore ( 1985) 提出了增长型经济周期 , 即总量经济水平围绕其趋势 水平的波动或者总量经济增长率的波动。在增长型周期中 , 如果实际增长在长期趋势之上 , 经济处 于扩张期 ; 相反 , 如果实际增长低于长期趋势 , 经济处于紧缩期。从经济增长周期理论可知 , 经济持 续性地增长是很难达到的 , 经济增长是反复波动、迂回曲折地向前发展 , 具有一定的周期性。经济 周期经常展现出一些共同的特性 , 其中重要的一个就是经济周期的 非对称性 , 即在经济周期的扩张 和紧缩阶段表现出不同的行为 ( Kontolemis, 1999) 。 对经济周期的非对称性研究最具代表性的文章有 : Ne
4、ftci ( 1984) 的马尔可夫过程的分析框架 对其的统计推断、 Hamilton ( 1989) 的二区制的马尔可夫转移 ( MS) 模型、 Friedman ( 1993) 的 牵拉理 论 模型 ( Plucking Model) 和 Schel ( 1994) 的三区制特征的经济周期模型。 Neftci ( 1984) 使用有限 状态马尔可夫过 程 ( Markov Process) 的分析框架支持 Keynes ( 1936) 对经济周期的非对称性现象的 描述 : 美国战后失业率存在这样一种特征 ! ! ! 陡然上升和缓慢下降。也就是说 , 失业率的上升要比 下降的时间更短。 Si
5、chel ( 1993) 识别了经济周期中的两类非对称性 : 谷底型 ( deep) 非对称性和波 峰型 ( steep) 非对称性 , 并报告了两者在美国的经济周期中都是显著的。随后 Sichel ( 1994) 提出了 3 区制特征的经济周期模型 : 衰退阶段 , 高速增 长的复苏阶段 ! ! ! 在此阶段产出回到以前水平 , 复 苏以后的 稳定增 长阶段。此外 , Brunner ( 1992, 1997) , Cover and Hueng ( 2003) , French and Sichel * 陈浪南 , 中山大学经济研究所、岭南学院 , 邮政编码 : 510275, 电子信箱
6、: lnsclnmail. sysu. edu. cn; 刘 宏伟 , 广发证券结 构融 资部。本文为教育部人文社会科学 重点研 究基地 ( 复旦 大学世 界经济 研究所 ) 重大 项目 ( 05JJD790075) ; 国家 自然科 学基 金项 目 ( 70473106, 70673116) ) ; 中山大学 985 工程 产业与区域发展研究创新基 地 ; 上海立信会 计学院中国立信 风险管理研 究院课题 ; 及 广东省普通高校人文社会科学重点研究基地经费资助成果之一。感谢匿名审稿人的宝贵意见。 43 陈浪南 、 刘宏伟 : 我国经济周期 波动的非对称性和持续性研究 ( 1993) , Ha
7、mori ( 2000) 和 Lee ( 1999, 2002) 等人采用 ARCH 类模型研究产出增长波动率的非对称 性。研究结果表明 , 美国、日本、英国和德国的经济增长的波动率都具有显著的非对称性。 目前 , 大量的研究采用类似于基于经济增长紧缩时期的虚拟变量或阈 ( Threshold) 模型来检验 经济增长周期的非 对称性 ( Kim et al, 2005) 。 Kim and Nelson ( 1999b) 、 Mills and Wang ( 2002) 和刘金 全、刘志刚与于冬 ( 2005) 等人把经济增长过程简单分为二区制状态 : 扩张阶段和紧缩阶段。他们都 采用比较完整
8、的二区制 MS 模型 , 实证结果都支持了 Plucking 模型 , 是描述经济周期波动非对称性 的一种有效方法 , 并发现短期周期成分和增长率水平波动都具有一定程度的非对称性。 近来 , 国内学者如刘 金全和范 剑青 ( 2001) , 徐 大丰、朱平芳和 刘弘 ( 2005) 等人采 用 Hodrick Prescott 滤波和时间趋势分解方法 , 然后直接通过对经济周期成分如 GDP、货币供应量 M2、财政支 出、投资、进出口、消费和价格水平进行偏移度和波动深度检验来研究我国经济周期的非对称性及 相关性。结果表明 , 价格在经济周期的不同阶段表现出了非对称性调整 , 而价格的非对称性调
9、整会 导致对社会资源的非对称配置 , 进而导致经济周期的非对称性。但是 , 他们所采用的数据区间仅为 1992 年至 2000 年 , 观察值太少。 本文吸收刘树成 ( 2003) 、刘 金全和王大勇 ( 2003) 、郭明星、刘金 全和刘志刚 ( 2005) 与 Girardin ( 2005) 等人的经济增长三区制划分思想 , 将我国经济增长过程划分为三个不同的区制状态 : 低速增 长阶段、适速发展阶段和高速增长阶段 , 并允许各个区制内的均值和方差不同 , 运用三区制马尔可 夫均值和方差区制转移模型和贝叶斯 Gibbs 抽样非参数的方法来研究我国 1979 ! 2004 年之间经济 增长
10、周期波动的非对称性和持续性等特性。 二、实证模型 ( 一 ) 模型描述 从图 1A 可知 , 自 1978 年改革开 放以来 , 我国经济增长过程出现了显著的周 期性波动 , 但自 1996 年经济实现 软着陆 以后经济增长的波动性明显降低。图 1B 描述了 1982 年至 2004 年期间 实际产出增长率的条件波动率 ( 采用滚动窗口内的样本标准差计算 , 窗口长度为 16 个季度 ) 。从图 1 可知 , 我国经济增长的波动率并非平稳不变的 , 而是有 大起大落 、缓起缓落 、 大起缓落 和 缓起大落 等多种形态。 图 1 我国实际季度 GDP 增长率和条件波动性 ( 单位 : %) 尽管
11、大量的线性和非线性时间序列模型能模拟经济周期中的各种特性 , 但线性模型不能很好 刻画经济周期的非对称性 , 最近大量的非线性模型 , 如阈 ( Threshold) 模型、平滑转移自回归模型 ( Smooth Transition Autoregressive model ) ( Terasvirta and Anderson, 1992) , 和 马 尔 可 夫 区 制 转 移 ( Markov regime Switching, MS) 模型 ( Hamilton, 1989; Krolzig, 1997, 2001; Kim and Nelson, 1999a, b, c, 44 20
12、01) 2007 年第 4 期 都可以用来描述经济周期不同阶段当中的相关变量的非线性行为。但是 , 阈 ( Threshold) 模 型在描述经济周期 不同阶段的转移和链接方面存在局限 , 而 STAR 模型则侧重于描述不同阶段状 态转移过程中所表现的平滑特征。相比较而言 , 若把 MS 模型当中不同区制变量视为经济周期中 的不同阶段的话 , 由于 MS 模型只需依据样本数据便可推导出经济周期不同阶段的转换概率 , 并且 MS 模型当中的系数估计、条件均值、异方差性、持续期都可以设定为随经济周期不同阶段而变化的 形式。因而 , 用 MS 模型来刻画经济周期的扩张和紧缩时期不 同的非线性特性是恰
13、当的 ( Simpson et al. , 2001) 。本研究则主要采用马尔可夫区制转移模型来研究我国经济周期波动的非对称性和持 续性。 在先前文献对我 国经济增 长三区制 划分 思想的 基础上 , 本研究 采用类 似于 McConnell and Perez Quiros ( 2000) 和 Kim and Nelson ( 1999c) 的马尔可夫区制转移 ( Markov regime Swit ching) 模型 , 结 合 AIC 和 H Q 模型选择准则对最优滞后长度的选择结果 ( p = 2) , 最后 , 我们选取 MSMV( 3) AR( 2) ( Three regime
14、 Markov Swit ching Mean and V ariance with AR( 2) model) 来研究我国经济周期波动的非对 称特征。具体表述如下 : r t - ( St ) = 1 rt- 1 - ( St- 1 ) + 2 rt- 2 - ( St- 2 ) + ( St ) !t ( 2. 1) !t N 0, 1 ( 2. 2) 其中 , rt 表示经济增长率 , ( St ) 和 ( St ) 分别为依赖于不可观测的状态变量 St 的实际季度 GDP 增长率 rt 的条件均值和条件方差。另外 , 我们假定状态变量 St 是离散取值的三区制一阶马 尔可夫过程 ( M
15、arkov Process) , 取值为 1, 2 和 3。这样 , 变量 St 的转移概率矩阵 P 为 : p 11 , p 12 , p 13 P = p 21 , p 22 , p 23 ( 2. 3) p 31 , p 32 , p 33 其中 p ij = Pr St = j | St- 1 = i , j = 1 pij = 1, i = 1, 2, 3 ( 2. 4) pij 表示为状态变量 St 从 t 1 时刻 i 状态转换到 t 时刻 j 状态的概率 , 很明显 0 2 1 满足模型设置的初始区制的限制。另外 , 从区制 1, 2 和 3 的 95% 后验概率区间来看 ,
16、只有区制 2 与区制 3 有很小的重叠区间 ( 9 0816, 9 4821) , 分别只 占区制 2 和区制 3 自身区间的 7 2% 和 6 3% , 其余区间都没有重叠。所以 , 该模型支持我国经济增 长周期波动的三区制划分 , 这意味着该模型在很大程度上支持 我国经济增长过程的三阶段假说 ( 刘金全、王大勇 , 2003) 。 如表 2 所示 , 三个区制相应的方差估计值分别为 : 1 = 6 6901, 2 = 2 2399 和 3 = 4 0385, 同样 可以看出 1 3 2 , 说明区制 1 的方差最大 , 其次为区制 3, 最小的是区制 2, 这说明经济处于 适 速增长阶段
17、( S2t = 1) 和 高速增长阶段 ( S3t = 1) 时的波动性明显低于经济处于 低速增长阶段 ( S1t = 1) 时的波动性。这体现了各区制波动性的非对称性。 又由于 P12 = 0 2104, P13 = 1- P11 - P12 = 0 12, 显然 , P12 P13 说明 低速增长阶段 向 适速增长 阶段 转移的可能性 ( 21 04% ) 远大于向 高速增长阶段 转移的可能性 ( 12 0% ) 。另外 , 由区制 1 向区 制 3 的转移概率为 12 0% , 说明我国经济运行也存在这种 跳跃式 的可能性。如 1990 年至 1991 年仅 1 年之间 , 经济增长速度
18、从最低的 2 1% 跳跃式 增长到 10 3% 。区制 1 自身的持续概 率为 0 6696, 远高于自身的两个转移概率之和 ( 0 3304) , 说明处于低速增长区制的经济运行趋势也 具有一定程度的懒惰性 , 需要政府当局制定相应的宏观经济政策刺激经济运行区制的转移。当经 % 参见 Eviews 5 1 User s Guide, Copyright 1994 ! 2005 Quantitative Micro Software, LLC。 47 % Yt - Yt- 1 rt = ) 100 ( 3. 1) GDP 增长率及其一阶差分的描 JarqueBera 均值 (% ) 标准差 斜
19、 度 峰度 观察值 述性统计量。从 Jarque Bera 统 变量 计量的概率值 为 0 787 可知 , #r t #r t 2 2 2 2 2 2 陈浪南 、 刘宏伟 : 我国经济周期 波动的非对称性和持续性研究 济进入适速增长区制后 , 其自身的持续概率为 86 67% 。这也意味着 , 我国经济运行进入到 适速 增长阶段 区制以后 , 将有相当高的稳定性即很强的抗变能力 , 这个区制的增长率均值水平构成了 我国经济增长速 度的底部基础。我国 经济运行从适 速增长区制向 低速增长区制转 移的可能性 ( 7 38% ) 稍微大于向高速增长区制转移的可能性 ( 5 95% ) , 说明我国
20、经济处于适速增长态势时 , 向 高速增长或者经济进一步扩张的可能性小于向低速增长或者经济紧缩的可能性 , 这就要求我国政 府在调控宏观经济上要采用一定的刺激措施才能确保经济运行形式的稳定 性。当经济进入高速增 长区制以后 , 其自身的持续概率为 90 28% , 这说明其具有很高的稳定性 , 但从该区制向适速增长 区制和低速增长区制转移的可能性分别为 4 79% 和 4 93% 。这说明 , 我国经济运行处于高速增长 区制时都有可能向低速增长区制转移 , 也就是增长速度有 急剧下跌 的可能。如 1988 年至 1989 年仅仅 2 年之内 , 我国经济增长速度从最高的 12 5% 陡然下跌到最
21、低的 0 2% , 并维持在 2 0% ! 3 5% 之间持续了 4 个季度之久。以上说明我国经济增长区制的转 移存在一定程度的非对称性。 表 2 我国实际 GDP 增长率的 MSMV( 3) AR( 2) 模型参数的估计结果 参数 P11 P12 P21 P22 P31 P32 1 2 1 2 3 1 2 3 均值 0 8 0 1 0 05 0 9 0 05 0 9 0 8189 0 0568 1 0 1 0 1 0 1 0 4 5 9 5 先验值 标准差 0 16 0 16 0 16 0 16 0 16 0 16 0 1003 0 1000 1 0 1 0 1 0 2 0 2 0 2 0
22、均值 0 6696 0 2104 0 0738 0 8667 0 0493 0 0479 0 9233 0 0132 6 6901 2 2399 3 1385 1 4507 6 8206 11 7019 标准差 0 3310 0 0525 0 0297 0 1656 0 0266 0 0228 0 0345 0 0021 1 2513 0 6507 0 9534 0 3937 1 1580 2 6481 后验值 中位数 0 8249 0 2363 0 0778 0 9180 0 0445 0 0261 0 9354 0 0124 6 3445 2 1099 3 0873 1 3276 6 37
23、89 12 1504 95% 后验概率区间 ( 0 5675, 0 9487) ( 0 0215, 0 5763) ( 0 0109, 0 2413) ( 0 5641, 0 9746) ( 0 0094, 0 1756) ( 0 0089, 0 1708) ( 0 7648, 0 9987) ( 0 0008, 0 0651) ( 4 7169, 10 6852) ( 0 8652, 3 7862) ( 1 6896, 4 6314) ( - 0 3448, 3 8053) ( 3 9039, 9 4821) ( 9 0816, 15 4521) 从表 2 中的方差估计结果可以看出 , 区制
24、 1 与区制 2、区制 3 方差的 95% 后验概率区间互不重 叠 , 说明三区制波动率相等 ( 1 = 2 = 3 ) 的零假设被拒绝 , 即这三个区制中至少有一个两两组合的 区制方差是不同 的。 但是 , 区制 2 与 区制 3 的 95% 后验 概率区 间是 相互 重叠 的 , 重 叠区 间为 ( 1 6896, 3 7862) , 它分别占据了区制 2 和区制 3 自身的 95% 后验概率区间的 71 8% 和 71 3% , 重叠的范围很大 , 因此区制 2 和区制 3 之间并不具有方差转移的特征 , 据此可以判断我国经济周期 % 71 3% 。 它分别等于 : ( 3 7862-
25、1 6896) ( 3 7862- 0 8652) ) 100% = 71 8% ; ( 3 7862- 1 6896) ( 4 6314 - 1 6896) ) 100% = 48 2 2 2 2 2 2 % 并不存在 3 个区制方差都转移的结论 , 但不排除具有 2 区制转移的可能 也存在一定的非对称性。 % 2007 年第 4 期 。这也说明三区制的方差 从表 2 和式 ( 2 4) 可以得出 , P23 = 0 0595, P33 = 0 9028。很显然 , 各区制的持续概率大小排序 为 : P33 P22 P11 , 这意味着各区制在下一季度继续保持原区制的可能性从大到小的排序为
26、: 高速增 长区制 3, 适速增长区制 2 和低速增长区制 1。从 Smith and Summers ( 2002) 的 BBQ dating 代数得知 , 我国经济 低速增长阶 段 、 适速增长阶段 和 高速增长阶段 的平均持续期 ( expected duration) 分别约为 3 0、 7 5 和 10 3 个季度。这说明我国经济处于 低速增长阶段 的平均持续期最短 , 只有 3 个季度 ; 高速增长阶段 的平均持续期最长 , 为 10 3 个季度 ; 适速增长阶段 的平均持续期居 中 , 为 7 5 个季度。从图 1 也可直观地看出这一点。这说明 , 我国经济增长各区制的持续性不同
27、。 最后 , 1 , 2 和 ( 1 + 2 ) = 0 9365 值都大于零小于 1, 说明方程 ( 1- 1 L- 1 L ) = 0 的单位根都处 在单位圆之外 , 满足我们的抽样模拟的需要。 1 = 0 9233 说明实际产出增长率的均值化后的离差 值对其下一期离差值的影响很大 , 达 92 33% 。这说明 , 我国经济季度实际产出增长率的前一期均 值偏离值对其当期均值偏离值的影响很大而且是同方向的 , 也就是当前一期增长率对该区制均值 有正的偏离时下一期还可能是正的偏离 , 并且偏离大小的程度收缩较小。因此 , 当我国经济增长率 负向偏离区制均值时 , 其下一季度的还可能负向偏离均
28、值但其幅度绝对值减小 , 说明区制内的经济 增长过程总会慢慢地趋向于区制内均值。另外 2 = 0 0132 则说明滞后两期的离差值对当期的影 响较小只有 1 32% , 其估计值处于 95% 的后验概率区间之内也不能忽略。另外 ( 1 + 2 ) 的值等于 0 9365 接近于 1, 说明各区制内经济波动的持续性较高。 ( 二 ) 平滑概率和经济周期的形状 在模型参数估计的基础上 , 可以推导出区制状态变量 St 在样本区间内地离散取值的平滑概 率。图 2、 3 和 4 分别描述了我国经济 低速增长阶段 、高速增长阶段 和 适速增长 阶段 区制下 的平滑概率 , 概率值越大 , 经济处于相应区
29、制的可能性也就越大。 一般说来 , 当区制状态变量 St 的概率 Pr ( St = j | !rT ) 0 5 j = 1, 2, 3 时区制转移发生 , 也就是说此 时处于 j 区制 ( j = 1, 2, 3) , 它说明了区制转移有力的 证据。从图 2 可以看出 , 1980 年第 4 季度至 1981 年第 2 季度、 2001 年第二季度至第四季度和 1988 年第三季 度至 1990 年第一季度期间我国经济发生了较长时间 的低速增长 , 它们分别为 3 个 , 3 个和 7 个季度 ; 而 1986 年第 3 季度、 1997 年第三季度和第四 季度、 1998 年第 三季度和
30、1999 年第二季度期间出现了较短时间或个 别季度的低速增长 ; 其中时间最长和最 短的分别为 7 个和 1 个季度 , 这与前面得出的该区制的平均持续期 图 2 我国经济 低速增长阶段 下的平滑概率 为 3 0 个季度结论基本一致。如表 3 所示 , 经济低速 ( 三区制 、 单变量 、 Gibbs 抽样 ) 增长在此区间内一共出现了 19 个季度 , 与总季度数相比 , 可知经济周期中出现 低速增长阶段 的 % 从区制 2 和区制 3 的重叠区间占据了它们自身 95% 的后验概率区间的 70% 以上 , 可以主 观的判断 我们不能 拒绝它们 的 2 2 方差项相等 ( 2= 3 ) 的假设
31、 , 即合并这两个区制的方差为同一个方差项 ! ! ! 低方差项 ( Low Volatility) 。而 区制 1 为高方差项 ( High Volatility) , 这样模型的设定将需要修改。这是作者未来研究的方 向 , 因为同 时考虑均值 项和方差 项交错转 移的模型 将比较复 杂 , 本文将不做讨论。 t t ii 49 & 2 - 1 陈浪南 、 刘宏伟 : 我国经济周期 波动的非对称性和持续性研究 总比率为 18 45% , 说明很小可能性处于低速经济增长的可能。为了比较经济周期低速增长阶段 和产出增长率降低之 间的关系 , 可以联合参考图 1 和图 2。图 2- 图 4 中相应
32、区制状态变量 St 的概 率大于 0 5 的区间用阴影部分标示 , 而一个季度的用垂直线表示 ( 下同 ) 。 从图 3 可以直观地看出 , 1982 年第四季度至 1986 年第二季度、 1987 年第一季度至 1988 年第一 季度、 1991 年第四季度至 1994 年第二季度期间我国经济发生了较长时间的高速增长 , 它们的持续 时间分别为 16、 5、 9 个季度 , 1998 年第一季度和 2003 年第一季度都出现了一个季度的高速增长。 说明经济适速 增长的持续时间较长也意味着经济适速增长阶段的经济周期波动保持了相对稳定的 态势 ( P33 = 0 9028) , 这也与前面得出的
33、该区制的平均持续期为 10 3 个季度结论基本一致。如表 3 所示 , 经济 高速增长阶段 在样本区间内一共出现了 33 个季度 , 与总季度数相比 , 可知经济周期中 出现 高速增长阶段 的总比率为 32 04% , 约 2 倍于低速经济增长的概率。显而易见 , 我国经济处 于高速增长的可能性远大于低速增长的可能性。 由状态变量 St 的定义可知 : S2t = 1- S1t- S3t, 所以当区间既不属于区制 1( S1t = 0) 又不属于区制 3( S3t = 0) 时 , 这些区间就应该属于 适速增长阶段 区制 2( S2t = 1) ( 如图 4 所示 ) 。从图 4 可直接看 出
34、 , 经济适速增长的区间分别比较松散 , 从 1 个季度到 10 个季度的都有 , 平均持续时间在 5 个季度 左右。如表 3 所示 , 经济 适速增长阶段 在样本区间内一共出现了 51 个季度 , 与总季度数相比 , 可 知经济周期中出现 适速增长阶段 的总比率为 49 51% , 分别约 3 倍和 1 5 倍高于低 速增长和高速 增长的概率值 , 它非常接近于 0 5, 即我国经济几乎有一半的可能性处于适速增长阶段。 图 3 我国经济 高速增长 阶段 下的平滑概率 图 4 我国经济 适速增长阶段 下的平滑概率 ( 三区制 、 单变 量 、 Gibbs 抽样 ) 同时 1994 年至 199
35、6 年之间 , 大部分都处于 适 表 3 ( 三 区 制 、 单变量 、 Gibbs 抽样 ) 我国经济增长区制的平均 速增长阶段 但其区制的概率并不是完全接近于 1 而是处于 0 7 到 0 95 之间 , 而 此时的 高速 增长阶 段 的估计概率一般都处于 0 1 ! 0 3 之间 , 说明我 国经济在 1994 到 1996 年之间出现了不同程度的调 整 : 实现由 卖方市场向买方市场的转变 、经济政 策从扩张性向紧缩性的转变 、 总供给不足向需求 不足的转变 的重要时期 , 期间我国 经济增长所出现 的 过热现象 , 不仅形成了当时经济稳定的适速增 区制 1 区制 2 区制 3 总和
36、持续期和数量汇总 季度数量 所占比率 ( % ) 19 18 45 51 49 51 33 32 04 103 100 00 平均 持续期 3 0 7 5 10 3 20 8 长 , 也由于严重通货膨胀的出现 , 直接促使了当时紧缩性货币政策的实施。 五、结论与启示 本 文运用了三区制马尔可夫均值和方差转移的二阶自回归 ( MSMV ( 3) AR( 2) ) 模型和贝叶斯 50 2007 年第 4 期 Gibbs 抽样非参数估计方法 , 对我国 1979 ! 2004 年之间经济增长周期波动的非对称性和持续性特 性进行了实证分析 , 估计结果显著支持 MSMV( 3) AR( 2) 模型 ;
37、 区制均值大小的差异显著支持我国 经济增长的 3 区制阶段划分。 研究结果 表明 , 我国的经济周期波动存在明显的非对称性 , 且持续性在不同的阶段表现也不 同。 1 我国经济周期的非对称性主要体现在各个增长阶段的均值、方差、阶段性之间的转移概率 的不同。具体说 , 我国经济处于适速增长阶段时 , 其波动性最低 ; 处于高速增长阶段时 , 其波动性次 之 ; 处于低速增长阶段时 , 其波动性最高。这表明 , 我国经济处于低速增长阶段时 , 其稳定性最差 , 而处于适速或高速增长阶段时 , 其稳定性往往比较高。阶段性之间的转移概率的不同则表明了我 国经济从低速增长阶段向适速增长阶段转移的可能性远
38、高于从低速 增长阶段向高速增长阶段转移 的可能性 ; 而从高速增长阶段向低速增长阶段转移与高速增长阶段向适速阶段转移的可能性则相 差无几。 2 我国经济周期的持续性主要体现在经济周期中不同增长阶段的自维持概率及其平均持续 期之间的不同。具体说 , 我国经济处于高速增长阶段时 , 其自维持概率最高 ; 处于适速增长阶段时 , 其自维持概率次之 , 处于低速增长阶段时 , 其自维持概率最低。同时 , 我国经济处于高速增长阶段 时 , 其平均持续期最长 ; 处于适速增长阶段时 , 其平均持续期次之 ; 而处于低速增长阶段时 , 其平均 持续期最短。 这两方面的实证分析结果都说明 , 我国经济增长各区
39、制的持续性表现不尽相同 , 而高 速增长阶段的持续时间最长。 参考文献 郭明星、刘 金全和刘志刚 , 2004: 我 国货币供给增长 率与国内产出 增长之间的影响 关系检验 ! ! ! 来自 MS VECM 模型的 新证 据 (, 数量经济技术经济研究 (第 5 期。 李建伟 , 2003: 当期我国经济运行的周期性波动特性 (, 经济研究 (第 7 期。 刘金全、范剑青 , 2001: 中国经济周期的非对称性和相关性研究 (, 经济研究 (第 5 期。 刘金全、刘志 刚、于冬 , 2005: 我国经济周期波动性与阶段性之间关联 的非对称性检验 ! ! ! Plucking 模型对中国 经济的
40、实证 研 究 (, 统计研究 (第 8 期。 刘金全、刘志刚 , 2005: 我国经济周期波动中实际产出波动性的动态模式与成因分析 (, 经济研究 (第 3 期。 刘金全、王大勇 , 2003: 我国经济增长的阶段性假说和波动性溢出效应检验 (, 财经研究 (第 5 期。 刘树成 , 2004: 新一轮经济周期的背景特点 (, 经济研究 (第 3 期。 刘树成 , 2003: 中国经济波动的 新轨迹 (, 经济研究 (第 3 期。 罗光强、段慧兰、莫鸣第 , 2006: 农业大省农业经济波动与国民经济波动关系的研究 ! ! ! 以湖南省为例 (, 南方经济 (第 4 期。 徐大丰、朱平芳、刘弘
41、 , 2005: 中国经济周期的非对称性问题研究 (, 财经研究 (第 4 期。 张兵 , 2006: 论中国经济长周期波动的特殊性 (, 南方经济 (第 9 期。 Abeysinghe, T. and Gulasekaran, R. , 2004, Quarterly Real GDP Estimates for China and ASEAN4 with a Forecast Evaluation , Journal of Forecasting , 23, 431 ! 447. Albert, J. H. , and S. Chib, 1993, Bayes Inference Via
42、Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts , Journal of Business and Economic Statistics, 11( 1) , 1 ! 15. Clements, M. P. and Krolzig, H. M. , 2003, Business Cycle Asymmetries: Characterization and Testing based on Markov Switching Autoregressions. Journ
43、al of Business and Economic Statistics, 21, 196! 211. Diebold, F. X. and G. D. Rudebusch, 1996, Measuring Business Cycles: A Modern Perspective , Review of Economics and Statistics, 78, 67 ! 77. French, M. W. , and Sichel, D. , 1993, Cyclical Patterns in the Variance of Economic Activity , Journal o
44、f Business and Economic Statistics , 11, 113 ! 119. Friedman, M. , 1993, The +Plucking Model of Business Fluctuations Revisited. , Economic Inquiry , 31, 171 ! 177. Girardin, Eric. , 2005, Growth Cycle Features of East Asian Countries: Are They Similar? International Journal of Finance and Economics
45、 , 10, p143 ! 156. Hamilton, J . D. , 1989, A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , Econometrica , 51 陈浪南 、 刘宏伟 : 我国经济 周期 波动的非对称性和持续性研究 57, 357 ! 384. Kim, C. Jin, Nelson, C. R. and Piger, J. , 2004, The Less Volatile US Economy: Potential Explanations , Journal of Business and Economic Statistics, 22 (1) , p80 ! 93. A Bayesian Investigation of Timing, Breadth and Kim, C. J. and C. J. Murray, 2002, Permanent and Transitory Components of Recessions , Empirical Economics 27, 163! 183. Kim, C. J. and C. R. Nelson, 1999a, F
限制150内