高数第九章(5)隐函数的求导公式ppt课件.ppt
《高数第九章(5)隐函数的求导公式ppt课件.ppt》由会员分享,可在线阅读,更多相关《高数第九章(5)隐函数的求导公式ppt课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第九章 第五节机动 目录 上页 下页 返回 结束 一、一个方程所确定的隐函数一、一个方程所确定的隐函数 及其导数及其导数 二、方程组所确定的隐函数组二、方程组所确定的隐函数组 及其导数及其导数隐函数的求导方法 本节讨论 :1) 方程在什么条件下才能确定隐函数 .例如, 方程02Cyx当 C 0 时, 不能确定隐函数;2) 在方程能确定隐函数时, 研究其连续性、可微性 及求导方法问题 .机动 目录 上页 下页 返回 结束 一、一个方程所确定的隐函数及其导数一、一个方程所确定的隐函数及其导数定理定理1.1. 设函数),(yxF;0),(00yxF则方程00),(xyxF在点单值连续函数 y =
2、f (x) , )(00 xfy 并有连续yxFFxydd(隐函数求导公式)定理证明从略,仅就求导公式推导如下: 具有连续的偏导数;的某邻域内某邻域内可唯一确定一个在点的某一邻域内满足0),(00yxFy满足条件机动 目录 上页 下页 返回 结束 导数00(,)P xy0)(,(xfxF两边对 x 求导0ddxyyFxFyxFFxydd0yF,0),()(所确定的隐函数为方程设yxFxfy在),(00yx的某邻域内则机动 目录 上页 下页 返回 结束 若F( x , y ) 的二阶偏导数也都连续,22ddxy2yxxyyxxFFFFF3222yxyyyxyxyxxFFFFFFFFyxFF)(y
3、xFFy)(2yxyxyyyyxFFFFFFF二阶导数 :)(yxFFxxyxxydd则还有机动 目录 上页 下页 返回 结束 例例1. 验证方程01sinyxeyx在点(0,0)某邻域可确定一个单值可导隐函数, )(xfy 0dd,0dd22xxyxxy解解: 令, 1sin),(yxeyyxFx,0)0 , 0(F, yeFxx连续 ,由 定理1 可知,1)0 , 0(yF0, )(xfy 导的隐函数 则xyFy cos在 x = 0 的某邻域内方程存在单值可且机动 目录 上页 下页 返回 结束 并求0ddxxy0 xFFyx 1xy cosyex0, 0yx机动 目录 上页 下页 返回
4、结束 0dd22xxy)cos(ddxyyexx2)cos( xy 3100yyx)(yex)(cosxy )(yex) 1sin(yy1, 0, 0yyx0 xy30dd22xxy)(, 01sinxyyyxeyxyycos两边对 x 求导1两边再对 x 求导yyyy cos)(sin2令 x = 0 , 注意此时1,0yy0 yxyyexxey0 yx)0 , 0(cosxyyex导数的另一求法导数的另一求法 利用隐函数求导机动 目录 上页 下页 返回 结束 定理定理2 . 若函数 ),(000zyxP),(zyxFzyzxFFyzFFxz,的某邻域内具有连续偏导数连续偏导数 ,则方程0)
5、,(zyxF在点),(00yx并有连续偏导数, ),(000yxfz 定一个单值连续函数 z = f (x , y) , 定理证明从略, 仅就求导公式推导如下:满足0),(000zyxF0),(000zyxFz 在点满足:某一邻域内可唯一确机动 目录 上页 下页 返回 结束 0),(,(yxfyxF两边对 x 求偏导xFzxFFxzzyFFyz同样可得,0),(),(所确定的隐函数是方程设yxFyxfz则zFxz00),(000zFzyx的某邻域内在机动 目录 上页 下页 返回 结束 例例2. 设,04222zzyx解法解法1 利用隐函数求导0422xzxzzxzxz2 22zxxz222)(
6、 2xz222xzz0422xz2)(1xz322)2()2(zxz.22xz求机动 目录 上页 下页 返回 结束 再对 x 求导解法解法2 利用公式设zzyxzyxF4),(222则,2xFxzxFFxz两边对 x 求偏导)2(22zxxxz2)2()2(zxzxz322)2()2(zxz2zxzx242 zFz机动 目录 上页 下页 返回 结束 zxFFxz xz例例3. 设F( x , y)具有连续偏导数, 0),(zyzxF.dz求解法解法1 利用偏导数公式.是由方程设),(yxfz 0),(zyzxF yz212FyFxFz211FyFxFzyyzxxzzdddzF11 1F)(2z
7、x 2F)(2zyzF12 确定的隐函数,)dd(2121yFxFFyFxz则)()(2221zyzxFF 已知方程机动 目录 上页 下页 返回 结束 故对方程两边求微分: 1F)dd(d2121yFxFFyFxzz)dd(2zzxxzzzFyFxd221 zyFxFdd21解法解法2 微分法.0),(zyzxF)dd(2zzyyz)(dzx 2F0)(dzy 1F 2F0机动 目录 上页 下页 返回 结束 二、方程组所确定的隐函数组及其导数二、方程组所确定的隐函数组及其导数隐函数存在定理还可以推广到方程组的情形.0),(0),(vuyxGvuyxF),(),(yxvvyxuu由 F、G 的偏
8、导数组成的行列式vuvuGGFFvuGFJ),(),(称为F、G 的雅可比雅可比( Jacobi )行列式.以两个方程确定两个隐函数的情况为例 , 即雅可比 目录 上页 下页 返回 结束 定理定理3.3.,0),(0000vuyxF的某一邻域内具有连续偏设函数),(0000vuyxP),(, ),(vuyxGvuyxF则方程组0),(,0),(vuyxGvuyxF),(00yx在点的单值连续函数单值连续函数),(, ),(yxvvyxuu且有偏导数公式 : 在点的某一邻域内可唯一唯一确定一组满足条件满足:0),(),(PvuGFPJ;0),(0000vuyxG导数;, ),(000yxuu 机
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 函数 求导 公式 ppt 课件
限制150内