单片机和DS18B20的温度控制系统设计-中英文献翻译(共17页).doc
《单片机和DS18B20的温度控制系统设计-中英文献翻译(共17页).doc》由会员分享,可在线阅读,更多相关《单片机和DS18B20的温度控制系统设计-中英文献翻译(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 大学毕业论文(设计)外文文献翻译申请学位: 工学学士学位院 系: 学院专 业: 电子信息工程姓 名: 学 号: 指导教师: 201x年5月28日 大学DS18B20 Digital ThermometerDESCRIPTIONThe DS18B20 Digital Thermometer provides 9 to 12-bit (configurable) temperature readings which indicate the temperature of the device.Information is sent to/from the DS18B20
2、 over a 1-Wire interface, so that only one wire (and ground) needs to be connected from a central microprocessor to a DS18B20. Power for reading, writing, and performing temperature conversions can be derived from the data line itself with no need for an external power source.Because each DS18B20 co
3、ntains a unique silicon serial number, multiple DS18B20s can exist on the same 1-Wire bus. This allows for placing temperature sensors in many different places. Applications where this feature is useful include HVAC environmental controls, sensing temperatures inside buildings, equipment or machiner
4、y, and process monitoring and control.FEATURESUnique 1-Wire interface requires only one port pin for communicationMultidrop capability simplifies distributed temperature sensing applicationsRequires no external componentsCan be powered from data line. Power supply range is 3.0V to 5.5VZero standby p
5、ower requiredMeasures temperatures from -55C to+125C. Fahrenheit equivalent is -67F to +257FThermometer resolution is programmable from 9 to 12 bitsConverts 12-bit temperature to digital word in 750 ms (max.)User-definable, nonvolatile temperature alarm settingsAlarm search command identifies and ad
6、dresses devices whose temperature is outside of programmed limits (temperature alarm condition)Applications include thermostatic controls, industrial systems, consumer products,thermometers, or any thermally sensitivesystem.PIN ASSIGNMENTPIN DESCRIPTIONGND - GroundDQ - Data In/OutVDD - Power Supply
7、VoltageNC - No ConnectDETAILED PIN DESCRIPTION OVERVIEWThe block diagram of Figure 1 shows the major components of the DS18B20. The DS18B20 has four main data components: 1) 64-bit lasered ROM, 2) temperature sensor, 3) nonvolatile temperature alarm triggers TH and TL. The device derives its power f
8、rom the 1-Wire communication line by storing energy on an internal capacitor during periods of time when the signal line is high and continues to operate off this power source during the low times of the 1-Wire line until it returns high to replenish the parasite (capacitor) supply. As an alternativ
9、e, the DS18B20 may also be powered from an external 3 volt - 5.5 volt supply.DS18B20 BLOCK DIAGRAM Figure 1Communication to the DS18B20 is via a 1-Wire port. With the 1-Wire port, the memory and control functions will not be available before the ROM function protocol has been established. The master
10、 must first provide one of five ROM function commands: 1) Read ROM, 2) Match ROM, 3) Search ROM, 4) Skip ROM, or 5) Alarm Search. These commands operate on the 64-bit lasered ROM portion of eachdevice and can single out a specific device if many are present on the 1-Wire line as well as indicate to
11、the bus master how many and what types of devices are present. After a ROM function sequence has been successfully executed, the memory and control functions are accessible and the master may then provide any one of the six memory and control function commands. One control function command instructs
12、 the DS18B20 to perform a temperature measurement. The result of this measurement will be placed in the DS18B20s scratch-pad memory, and may be read by issuing a memory function command which reads the contents of the scratchpad memory. The temperature alarm triggers TH and TL consist of 1 byte EEPR
13、OM each. If the alarm search command is not applied to the DS18B20, these registers may be used as general purpose user memory. The scratchpad also contains a configuration byte to set the desired resolution of the temperature to digital conversion. Writing TH, TL, and the configuration byte is done
14、 using a memory function command. Read access to these registers is through the scratchpad. All data is read and written least significant bit first.1-WIRE BUS SYSTEMThe 1-Wire bus is a system which has a single bus master and one or more slaves. The DS18B20 behaves as a slave. The discussion of thi
15、s bus system is broken down into three topics: hardware configuration, transaction sequence, and 1-Wire signaling (signal types and timing).HARDWARE CONFIGURATIONThe 1-Wire bus has only a single line by definition; it is important that each device on the bus be able to drive it at the appropriate ti
16、me. To facilitate this, each device attached to the 1-Wire bus must have open drain or 3-state outputs. The 1-Wire port of the DS18B20 (DQ pin) is open drain with an internal circuit equivalent to that shown in Figure 9. A multidrop bus consists of a 1-Wire bus with multiple slaves attached. The 1-W
17、ire bus requires a pullup resistor of approximately 5 k.The idle state for the 1-Wire bus is high. If for any reason a transaction needs to be suspended, the bus MUST be left in the idle state if the transaction is to resume. Infinite recovery time can occur between bits so long as the 1-Wire bus is
18、 in the inactive (high) state during the recovery period. If this does not occur and the bus is left low for more than 480 s, all components on the bus will be reset.HARDWARE CONFIGURATION TRANSACTION SEQUENCEThe protocol for accessing the DS18B20 via the 1-Wire port is as follows:_ Initialization_
19、ROM Function Command_ Memory Function Command_ Transaction/DataINITIALIZATIONAll transactions on the 1-Wire bus begin with an initialization sequence. The initialization sequence consists of a reset pulse transmitted by the bus master followed by presence pulse(s) transmitted by the slave(s). The pr
20、esence pulse lets the bus master know that the DS18B20 is on the bus and is ready to operate. For more details, see the “1-Wire Signaling” section.ROM FUNCTION COMMANDSOnce the bus master has detected a presence, it can issue one of the five ROM function commands. All ROM function commands are 8 bit
21、s long. A list of these commands follows (refer to flowchart in Figure 5)Read ROM 33hThis command allows the bus master to read the DS18B20s 8-bit family code, unique 48-bit serial number, and 8-bit CRC. This command can only be used if there is a single DS18B20 on the bus. If more than one slave is
22、 present on the bus, a data collision will occur when all slaves try to transmit at the same time (open drain will produce a wired AND result).Match ROM 55hThe match ROM command, followed by a 64-bit ROM sequence, allows the bus master to address a specific DS18B20 on a multidrop bus. Only the DS18B
23、20 that exactly matches the 64-bit ROM sequence will respond to the following memory function command. All slaves that do not match the 64-bit ROM sequence will wait for a reset pulse. This command can be used with a single or multiple devices on the bus.Skip ROM CChThis command can save time in a s
24、ingle drop bus system by allowing the bus master to access the memory functions without providing the 64-bit ROM code. If more than one slave is present on the bus and a Read command is issued following the Skip ROM command, data collision will occur on the bus as multiple slaves transmit simultaneo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单片机 DS18B20 温度 控制系统 设计 中英文 翻译 17
限制150内