地铁盾构施工控制测量措施(共9页).doc
《地铁盾构施工控制测量措施(共9页).doc》由会员分享,可在线阅读,更多相关《地铁盾构施工控制测量措施(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上广州地铁盾构施工控制测量措施摘要:以广州地铁盾构施工为背景,介绍盾构施工中不同阶段的测量方法,根据盾构机的结构、姿态、定位特点进行深入探讨并采取有效测量措施,保证盾构以正确姿态按设计掘进和贯通,最后阐述贯通后的相关测量工作。关键词:广州地铁;盾构施工;测量措施;贯通1 引言 随着全球化和改革开放的深入,广州城市经济发展迅速,城市问题突出,在高楼密集、道路拥挤的广州解决交通问题,以安全、快捷、环保著称的地铁是首选。广州地铁自1993年开工建设以来,经过十来年地铁工程建设,先后开通了4条地铁线路,舒缓了广州的交通压力。 广州地铁建设取得重大的成功之一是盾构技术的引用。广州
2、地铁以修建地铁一号线为契机,采取国际招标的方式在软土和复合地层中修建了地铁隧道。尤其是广州地区复合地层盾构的成功实践,结束了关于广州地区修建隧道宜采用矿山法还是盾构法的争论。在一号线取得成功经验的基础上,广州地铁在其二、三、四、五号和广佛线路大幅度采用盾构技术(广州地铁盾构施工情况见表1)。 地铁是一个综合体,建设一条高质量的地铁,是由多学科综合技术构成的,除了高标准的设计、先进的施工设备、工艺、材料外,主要还取决于施工的精度,所以有效合理的测量措施是实现高标准设计和施工精度(横向贯通50mm,纵向贯通25mm)的重要保证。2 盾构施工前测量2.1 控制点复测 (1)平面控制点复测 平面控制点
3、是为地铁施工沿线路方向测设的精密导线点,使用前必须按技术要求进行复测,其主要技术要求: 导线测角中误差2.5; 导线测距中误差6mm; 导线方位角闭合差 导线测距相对中误差1/60000; 导线全长相对闭合差1/35000; 相邻点的相对点位中误差8mm; 导线最弱点的点位中误差15mm; 导线附(闭)合长度35km; (2)高程控制点复测 观测方法: 奇数站上为:后前前后; 偶数站上为:前后后前。 主要技术要求: 每千米高差中数偶然中误差2mm;每千米高差中数全中误差4mm 观测次数:往返测各1次;平坦地往返附合或环线闭和差2.2 施工测量方案设计 测量方案是根据本标段工程实际情况,布置地上
4、平面、高程加密控制点和地下平面、高程控制点,对控制桩的保护措施做好联系测量的方案,因控制网而造成盾构区间贯通的误差分析以及在施工测量放样的具体方法等。2.3 地面平高控制点加密 (1)导线点加密测量:利用现有的GPS点和精密的精度为(L为水准线路长度,以km计)。2.4 联系测量 (1)定向联系测量 定向原理:见图1,测量仪器是全站仪+反射片,在整个施工过程中,坐标传递4次。井上、井下联系三角形满足下列要求: 两悬吊钢丝间距处不小于6m。 定向角应小于3。 a/c及a/c的比值小于1.5倍。 联系三角形边长测量,每次独立测量3测回,每测回往返3次读数,各测回较差在地上小于0.5mm,在地下小于
5、1.0mm。地上与地下测量同一边的较差小于2mm。角度观测,用全圆测回法观测4测回,测角中误差在4之内。各测回测定的地下起始边方位角较差不大于20,方位角平均值中误差应在12之内。联系三角形一次定向独立进行3测回,每测回后,变动2个吊锤位置重新进行定向测量,共有3套不同的完整观测数据。 (2)高程联系测量 整个区间施工中,高程传递至少3次。传递高程的地下近井点不少于2个,并对地下高程点间的几何关系进行检核。 测量近井水准点的高程线路应附合在地面相邻精密水准点上。采用在竖井内悬吊钢尺的方法进行高程传递时,地上和地下安置的2台水准仪应同时读数,每次独立观测3测回,每测回变动仪器高度,3测回得地上、
6、地下水准点的高差较差应小于3mm,并在钢尺上悬吊与钢尺检定时相同质量的重锤。3测回测定的高差进行温度、尺长修正。传递高程测量(见图2)3 盾构施工中测量3.1 施工控制测量 盾构施工控制测量最大特点是所有的控制导线点和控制水准点均处运动状态,所以盾构施工测量中导线的后延伸测量和水准点的复测显得尤为重要。 (1)地下导线测量 广州地铁采用双支导线的方法,双支导线每前进一段交叉一次。每一个新的施工控制点由2条路线传算坐标。当检核无误,最后取平均值作为新点的测点数据。线路平面示意图如图3。 地下导线测设要求: 导线直线段约150m布设一个控制导线点,曲线段控制导线点(包括曲线要素上的控制点)布设间距
7、不少于60m。 按等导线的技术要求施测.每次延伸施工控制导线测量前,对已有的施工控制导线前3个点进行检测无误后再向前延伸。 施工控制导线在隧道贯通前测量5次,其测量时间与竖井定向同步。当重合点重复测量的坐标值与原测量的坐标值较差小于10mm时,采用逐次的加权平均值作为施工控制导线延伸测量的起算值。 在掘进1000m和2000m时,加测陀螺方位角加以校核。3.2 盾构机始发测量 (1)盾构机导轨定位测量 盾构机导轨测量主要控制导轨的中线与设计隧道中线偏差不能超限,导轨的前后高程与设计高程不能超限,导轨下面是否坚实平整等,见图4、图5。 (2)反力架定位测量 反力架定位测量包括反力架的高度、俯仰度
8、、偏航等,反力架下面是否坚实、平整。反力架的稳定性直接影响到盾构机始发掘进是否能正常按照设计的方位进行。(3)盾构机姿态初始测量 盾构机姿态初始测量包括测量水平偏航、俯仰度、扭转度。盾构机的水平偏航、俯仰度是用来判断盾构机在以后掘进过程中是否在隧道设计中线上前进,扭转度是用来判断盾构机是否在容许范围内发生扭转。盾构机姿态测量原理。盾构机作为一个近似圆柱的三维体,在开始隧道掘进后我们是不能直接测量其刀盘的中心坐标的,只能用间接法来推算。在盾构机壳体内适当位置上选择观测点就成为必要,这些点既要有利于观测,又有利于保护,并且相互间距离不能变化。在图6中,O点是盾构机刀盘中心点,A点和B点是在盾构机前
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地铁 盾构 施工 控制 测量 措施
限制150内