毕业设计外文翻译(修改后)(共20页).doc
《毕业设计外文翻译(修改后)(共20页).doc》由会员分享,可在线阅读,更多相关《毕业设计外文翻译(修改后)(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上济南大学泉城学院毕业设计外文资料翻译题目 铝合金压铸工艺过程中金属流动行为的变形分区 专业 机械设计制造及其自动化 班级 07Q3 学生 张群 学号 指导教师 陈秀生 二一一年 三 月 十七 日J. Cent. South Univ. Technol. (2009) 16: 07380742 DOI: 10.1007/s1177100901223 Deformation division of metal flow behavior during extrusion process of 7075 aluminum alloy LI Feng CHU Guan-nan
2、 LIU Xiao-jing (1. College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin , China; 2. College of Shipping, Harbin Institute of Technology at Weihai, Weihai , China)Abstract: To reduce defects caused by non-homogeneous metal flow in conventional extrusion, a
3、 die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lodes coefficient were employed for the division of deformation area. The results show that when the metal is extruded with the guiding an
4、gle, no metal flow interface forms at the containers bottom, the dead zone completely disappears, the deformation types of the metal in the plastic deformation area change from three types to one type of tension, and the homogeneity of the deformation as well as metal flow are greatly improved. The
5、non-homogeneous metal flow at the final stage of extrusion is improved, reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress, and decreased from 70.8 to 34.8 MPa. Therefore, th
6、e surface cracks caused by additional stress are greatly reduced.Key words: extrusion process; flow defect; deformation division1 Introduction The improvement of the metal flow during extrusion processes is an important means to increase the formability and eliminate defects 1. Many factors may infl
7、uence the metal flow, among which the die structure is closely related to the metal flow.Analysis of die pocket design parameters shows that different pocket angles and pocket offsets will influence the metal flow greatly, and the latter tends to cause the bending of extrusion products 24. CHUNG et
8、al 5 discovered that the inhomogeneity of the strain distribution and generation of dead zone during double shear extrusion could be decreased by applying a smaller taper. ULYSSE 6 found that if the die bearing was not corrected or tuned appropriately, the product might be twisted and warped. Finite
9、 element method can be used for the optimum design of the die 7,and the homogeneity of the metal flow can be controlled effectively; the metal can beextruded easily 8, and the extrusion force can be decreased greatly 9.Many researches on the optimum design of the die have been done, but most of them
10、 are designed for avoiding a certain extrusion defect. It is complicated tooptimize the die structure by employing the finite element method, and even difficult to apply it to practical production 1012. For the above shortcomings, an extrusion die with guiding angle was designed to improve the metal
11、 flow during extrusion process. The guiding angle is different from the entry round corner of the conventional die 13. Although a wider entry round corner can be employed to improve the product quality, it cannot basically improve the metal flow and avoid the defects; after the guiding angle is empl
12、oyed, the metal in the deforming area is extruded twice with a lower extrusion ratio, which greatly changes the metal flow at the die pocket and influences the extrusion defects. Therefore, in this work, numerical simulation of extruding with and without guiding angle was carried out to investigate
13、the influence of guiding angle on metal flow, and comparison analysis between simulation and experiment results was also conducted. 2 Simulation conditions 2.1 Die structure The direct hot extrusion was taken as example. The die structures with and without guiding angle are shown in Fig.1. Guiding a
14、ngle () can change in a certain range, and =0 means without guiding angle. 2.2 Finite element model DEFORMTM2D was used to simulate the extrusion process. Because of the symmetrical characteristics, axisymmetric model was selected in the simulation, as shown in Fig.2. The radial constrain is superim
15、posed on the symmetry plane to make the normal deformation zero. Fig.1 Schematic drawings of die structure under conditions of without (a) and with (b) guiding angle ()Fig.2 Finite element model of extrusion process under conditions of without (a) and with (b) guiding angle Aluminum alloy 7075 bille
16、t was used in the experiments. The billet was 50 mm in diameter and 50 mm in height. The geometrical and material parameters were the same in both the simulation and experiment. In this work, the extrusion process was simulated by using rigid-plastic finite element model. The punch, container and di
17、e were considered as rigid bodies. The speed of the punch was 2 mm/s; the time increment was 0.1 s; the friction coefficient was 0.3; the isothermal extrusion temperature was 435 , and the extrusion ratio was 9.8. Numerical simulation was carried out at =5, 10, 15, 20 and 30, respectively. The resul
18、ts showed that extrusion load was the minimum at =15 14. Therefore, the die with =15 was selected. 3 Simulation of metal flow 3.1 Steady stage It can be seen from the deformation of the grids that, grids in this area mostly flow towards the die pocket in the form of parallelogram, which indicates th
19、at the deformation and flow of the metal are homogeneous. Therefore, it is easy for the metal to flow out the die pockets without the formation of dead zone.Fig.3 shows the velocity field with and without the guiding angle at the bottom of the die. It can be seen from Fig.3(a) that without employing
20、 the guiding angle, there is an obvious metal flow interface at the bottom of the die. A part of metal flows towards the die pocket, the other flows inward, and the dead zone is formed. After employing the guiding angle, as shown in Fig.3(b), the metal near the container flows towards the die pocket
21、s homogeneously, and no velocity interface is formed in the plastic deformation zone. The metal flows towards the die pockets radially without large angle turning, which will not only decrease the flow line turbulence, dead zone and overlap, but also improve the extrusion product quality. Fig.3 Velo
22、city field at bottom of die under conditions ofwithout (a) and with (b) guiding angle Comparison of the axial stress on the die exit section with and without the guiding angle is shown in Fig.4. The stress states of the axis and surface are compressive stress and tensile stress respectively when the
23、 metal is extruded without the guiding angle. With the increase of the distance from axis, the axial stress transforms from compressive stress to tensile stress. The compressive stress and tensile stress are approximately equal, which will result in non-homogeneity of the microstructure and properti
24、es. The additional stress increases rapidly and leads to the surface cracks when the lubrication condition is not very good. After the guiding angle is employed, the axial tensile stress of the surface point decreases from 70.8 (P1) to 34.8 (P2) MPa, and the axial stress distribution along theradial
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 外文 翻译 修改 20
限制150内