电子线路设计实验报告(共24页).doc
《电子线路设计实验报告(共24页).doc》由会员分享,可在线阅读,更多相关《电子线路设计实验报告(共24页).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实 验 报 告实验课程: 电子线路设计与测试 学生姓名: 沈 华 学 号: 专业班级: 通信121班(卓越计划) 指导老师: 王艳庆 喻嵘 2014 年 4 月 28 日目 录实验一:音频功率放大电路设计实验二:信号发生器设计实验三:直流稳压电源设计实验四:温度控制电路设计(实物)实验一、音频功率放大电路设计一、设计任务设计一小功率音频放大电路并进行仿真。二、设计要求已知条件:电源V或V;输入音频电压峰值为5mV;8/0.5W扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干基本性能指标:Po200mW(输出信号
2、基本不失真);负载阻抗RL8;截止频率fL300Hz,fH3400Hz扩展性能指标:Po1W(功率管自选)三、设计方案音频功率放大电路基本组成框图如下:音频功放组成框图由于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放大声音信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载RL(扬声器)提供一定的输出功率。应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的OTL(Output Transforme
3、rless)功率放大电路和OCL(Output Capacitorless)功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电
4、流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。四、电路仿真与分析1、话音放大器电路于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放
5、大声音信号,其输入阻抗应远大于话筒的输出阻抗。根据设计要求,话音放大器电路得增益为5。即2、滤波器电路滤波器用来滤除语音频带以外的干扰信号,本电路中采用二阶有源高通滤波器和二阶低通滤波器组合成带通滤波器,是该音频功率放大电路的为截止频率fL300Hz,fH3400Hz。实际仿真过程中截止频率大概,基本满足实验要求。电路如下:截止频率计算公式为,组成的带通滤波器增益大概为Av=1.8。3、功率放大器电路功率放大器在输出信号失真尽可能小的前提下,给负载RL(扬声器)提供一定的输出功率。本次电路中功率放大器采用使用最广泛的OCL(Output Capacitorless)功率放大电路,这种功放电路在
6、具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。电路图如下:此功放电路的的电压增益=100总的电路图如下:此音频功率放大电路在1000Hz时总的增益在300Hz-3400Hz范围中输出的电压峰值大约为=4.07V-6.14V。输出功率为200mW符合设计要求1000Hz时的波形: 本次电路设计中,根据设计要求,合理分配了各级电路得增益,使总的增益达到让人满意的结果。如果仅从对功率放大器性能的完美追求上去考虑,我们还可以把许多只功率放大管并联起来工作获得更高的性能。只有改为采用级前分频方式来设计制作音频功率放大器,我们才能从根本上克服级后分频的缺点,并根据不同工作
7、频带范围要求选用适合的器件,以最少的制造成本获得最高的效果 。实验二、信号发生器设计一、设计任务设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。二、设计要求基本性能指标:(1)频率范围100Hz1kHz;(2)输出电压:方波Up-p24V,三角波Up-p=6V,正弦波Up-p1V。扩展性能指标:频率范围分段设置10Hz100Hz, 100Hz1kHz,1kHz10kHz;波形特性 方波tr30us(1kHz,最大输出时),三角波r2%,正弦波rI2U2=14.4W (3)选择整流电路中的二极管 查手册选整流二极管IN4001,其参数为:反向击穿电压UBR=50V17V 最大整流电流IF
8、=1A0.4A (4)滤波电路中滤波电容的选择 滤波电容的大小可用下式求得。 1)求Ui: 根据稳压电路的的稳压系数的定义: 设计要求Uo15mV ,SV0.003 Uo=+3V+9V Ui=14V 代入上式,则可求得Ui 2)滤波电容C 设定Io=Iomax=0.8A,t=0.01S 则可求得C。 电路中滤波电容承受的最高电压为 ,所以所选电容器的耐压应大于17V。 注意: 因为大容量电解电容有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常 并入瓷介质小容量电容用来抵消电感效应,抑制高频干扰。温度控制电路设计一、设计任务设计一温度控制电路并进行仿真。二、设计
9、要求基本功能:利用AD590作为测温传感器,TL为低温报警门限温度值,TH为高温报警门限温度值。当T小于TL时,低温警报LED亮并启动加热器;当T大于TH时,高温警报LED亮并启动风扇;当T介于TL、TH之间时,LED全灭,加热器与风扇都不工作(假设TL20,TH30)。扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。三、设计方案AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1A/K。AD590适用于150以下、目前采用传统电气温度传感器的任何温度
10、检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。主要特性:流过器件的电流(A) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55+150;AD590的电源电压范围为430 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710m;精度高,AD590在-55+-150范围内,非线性误差仅为0.3。基本使用方法如右图。AD590的输出电流是以绝对温度零度(-273)为基准,每增加1,它会增加1A输出电流,因此
11、在室温25时,其输出电流Iout=(273+25)=298A。Vo的值为Io乘上10K,以室温25而言,输出值为10K298A=2.98V 。测量Vo时,不可分出任何电流,否则测量值会不准。温度控制电路设计框图如下:温度控制电路框图由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得到实际摄氏温度电压值(可适当放大到几伏特,不超过5V),再送温度判决电路判决,需根据报警温度确定门限比较电压值,电路均可用运算放大器及电压比较器来实现。可采用三极管和继电器(RELAY)来控制驱动风扇与加热器,在仿真中用D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子线路 设计 实验 报告 24
限制150内