离散型随机变量的均值与方差(共17页).doc
《离散型随机变量的均值与方差(共17页).doc》由会员分享,可在线阅读,更多相关《离散型随机变量的均值与方差(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上12.6离散型随机变量的均值与方差1.考查离散型随机变量的均值与方差的概念;2.利用均值、方差解决一些实际问题复习备考要这样做理解随机变量的均值、方差的意义、作用,能解决一些简单的实际问题1 离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)方差称D(X) (xiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2 均值与方差的性质(1)E(
2、aXb)aE(X)b.(2)D(aXb)a2D(X)(a,b为常数)3 两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)_p_,D(X)p(1p)(2)若XB(n,p),则E(X)_np_,D(X)np(1p)难点正本疑点清源1 对均值(或数学期望)的理解(1)期望是算术平均值概念的推广,是概率意义下的平均(2)E(X)是一个实数,由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值取值的平均状态(3)公式E(X)x1p1x2p2xnpn直接给出了E(X)的求法,即随机变量取值与相应概率值分别相乘后相加由此可知,求出随机变量的数学期望关键在于写出它的分
3、布列2 方差的意义D(X)表示随机变量X对E(X)的平均偏离程度,D(X)越大表明平均偏离程度越大,说明X的取值越分散,反之D(X)越小,X的取值越集中,由方差定义知,方差是建立在期望这一概念之上的在E(X)附近,统计中常用来描述X的分散程度1 若随机变量的分布列如下表,则E()的值为_.012345P2x3x7x2x3xx答案解析根据概率之和为1,求出x,则E()02x13x5x40x.2 (2017浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的,记X为该毕业生得到面
4、试的公司个数若P(X0),则随机变量X的数学期望E(X)_.答案解析由题意知P(X0)(1p)2,p.随机变量X的分布列为X0123PE(X)0123.3 某射手射击所得环数的分布列如下:78910Px0.10.3y已知的期望E()8.9,则y的值为()A0.4 B0.6 C0.7 D0.9答案A解析由可得y0.4.4 已知X的分布列为X101P设Y2X3,则E(Y)的值为()A. B4 C1 D1答案A解析E(X)(1)01.E(Y)2E(X)323.5 设随机变量XB(n,p),且E(X)1.6,D(X)1.28,则()An8,p0.2 Bn4,p0.4Cn5,p0.32 Dn7,p0.4
5、5答案A解析XB(n,p),E(X)np1.6,D(X)np(1p)1.28,题型一离散型随机变量的均值、方差例1(2012湖北)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX300300X700700X900X900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300 mm的条件下,工期延误不超过6天的概率思维启迪:先求出降水量在各范围内的概率,再求对应工期延误天数的概率,列出Y的分布列解(1)由已知条件和概率的加法
6、公式有P(X300)0.3,P(300X700)P(X700)P(X300)0.70.30.4,P(700X900)P(X900)P(X700)0.90.70.2,P(X900)1P(X900)10.90.1.所以Y的分布列为Y02610P0.30.40.20.1于是,E(Y)00.320.460.2100.13;D(Y)(03)20.3(23)20.4(63)20.2(103)20.19.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,得P(X300)1P(X300)0.7,又P(300X900)P(X900)P(X300)0.90.30.6.由条件概率,得P(Y6|X
7、300)P(X3)1.题型三均值与方差的应用例3现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为、;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0p1),设乙项目产品价格在一年内进行两次独立的调整记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元随机变量X1、X2分别表示对甲、乙两项目各投资10万元一年后的利润(1)求X1,X2的概率分布列和均值E(X1),E(X2);(2)当E(X1)E(X2)时,求p的取值范围思维启迪:
8、(1)求分布列,应先确定X的取值,再求X的取值对应的概率;(2)由E(X1)E(X2),找出关于p的不等式,即可求出p的范围解(1)X1的概率分布列为X11.21.181.17PE(X1)1.21.181.171.18.由题设得XB(2,p),即X的概率分布列为X012P(1p)22p(1p)p2故X2的概率分布列为X21.31.250.2P(1p)22p(1p)p2所以E(X2)1.3(1p)21.252p(1p)0.2p21.3(12pp2)2.5(pp2)0.2p2p20.1p1.3.(2)由E(X1)1.18,整理得(p0.4)(p0.3)0,解得0.4p0.3.因为0p1,所以当E(
9、X1)E(X2)时,p的取值范围是0p1.75,则p的取值范围是()A. B.C. D.答案C解析由已知条件可得P(X1)p,P(X2)(1p)p,P(X3)(1p)2p(1p)3(1p)2,则E(X)P(X1)2P(X2)3P(X3)p2(1p)p3(1p)2p23p31.75,解得p或p,又由p(0,1),可得p.二、填空题(每小题5分,共15分)5 在篮球比赛中,罚球命中1次得1分,不中得0分如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X的均值是_答案0.7解析E(X)10.700.30.7.6 有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 均值 方差 17
限制150内