2022年初中数学知识点按章节汇总试题(试卷).doc
《2022年初中数学知识点按章节汇总试题(试卷).doc》由会员分享,可在线阅读,更多相关《2022年初中数学知识点按章节汇总试题(试卷).doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本文档为独家精品文档尊重原创 切勿盗版以下资源均为最新版感谢您的支持初中数学知识点按章节汇总第一章:实数一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定意义的数,如、等。3、判断一个实数的数性不能仅凭外表上的感觉,往往要经过整理化简后才下结论。二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。1实数a的相反数是 -a; 2a和b互为相反数a+b=02、倒数:1实数aa0的倒数是;2a和b 互为倒数;3注意0没有倒数3、绝对值:1一个数a 的绝对值有以下三种情况
2、:2实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离3去掉绝对值符号化简必须要对绝对值符号里面的实数进行数性正、负确认,再去掉绝对值符号4、n次方根1平方根,算术平方根:设a0,称叫a的平方根,叫a的算术平方根。2正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。3立方根:叫实数a的立方根。4一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一
3、个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比拟1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。五、实数的运算1、加法:1同号两数相加,取原来的符号,并把它们的绝对值相加;2异号两数相加,取绝对值大的加数的符号,用较大的绝对值减去较小的绝对值.可用加法交换律、结合律2、减法:减去一个数等于加上这个数的相反数。3、乘法:1两数相乘,同号取正,异号取负,并把绝对值相乘。2n个实数相乘,有一个因数为0,积就为0;假设n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为
4、正;当负因数为奇数个时,积为负。3乘法可使用乘法交换律、乘法结合律、乘法分配律。4、除法:1两数相除,同号得正,异号得负,并把绝对值相除。2除以一个数等于乘以这个数的倒数。30除以任何数都等于0,0不能做被除数。5、乘方与开方:乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。六、有效数字和科学记数法1、科学记数法:设N0,那么N= a其中1a10,n为整数。2、有效数字:一个近似数,从左边
5、第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:1精确到那一位;2保存几个有效数字。第二章:代数式一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。3、代数式的分类:二、整式的有关概念及运算1、概念1单项式:像x、7、,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。2多项式:几个单项式的和叫做多项式。
6、多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升降幂排列:把一个多项式按某一个字母的指数从小大到大小的顺序排列起来,叫做把多项式按这个字母升降幂排列。3同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。2、运算1整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。 去括号法那么:括号前面是“+号,把括号和它前面的“+号去掉,括号里各项都不变;括号前面是“号,把括号和它前面的“号去掉,括号里的各项都变号。 添括号法那么:括号前面
7、是“+号,括到括号里的各项都不变;括号前面是“号,括到括号里的各项都变号。 整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。 2整式的乘除: 幂的运算法那么:其中m、n都是正整数 同底数幂相乘:;同底数幂相除:;幂的乘方:积的乘方:。 单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式。 单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。 单项除单项
8、式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,那么连同它的指数作为商的一个因式。 多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式: 平方差公式:;完全平方公式:,三、因式分解 1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。 2、常用的因式分解方法: 1提取公因式法: 2运用公式法:平方差公式:;完全平方公式:3十字相乘法:4分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。5运用求根公式法:假设的两个根是、,那么有:3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提公因式;2提出公因式或无公因式可
9、提,再考虑可否运用公式或十字相乘法;3对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。4最后考虑用分组分解法。四、分式 1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。 1分式无意义:B=0时,分式无意义; B0时,分式有意义。 2分式的值为0:A=0,B0时,分式的值等于0。 3分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。 4最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果假设是分式,一定要化为最简分式。 5通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,
10、叫做分式的通分。 6最简公分母:各分式的分母所有因式的最高次幂的积。 7有理式:整式和分式统称有理式。 2、分式的根本性质: 1;2 3分式的变号法那么:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算: 1加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。 2乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。 3除:除以一个分式等于乘上它的倒数式。 4乘方:分式的乘方就是把分子、分母分别乘方。五、二次根式 1、二次根式的概念:式子叫做二次根式。 1最简二次根式:被开方数的因数是整数
11、,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。 2同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。 3分母有理化:把分母中的根号化去叫做分母有理化。 4有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式常用的有理化因式有:与;与 2、二次根式的性质: 1 ; 2;3a0,b0;4 3、运算: 1二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。 2二次根式的乘法:a0,b0。 3二次根式的除法: 二次根式运算的最终结果如果是根式,要化成最简二次根式。第三章:方程和方程组
12、一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或方判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 1一元一次方程的标准形式:ax+b=0其中x是未知数,a、b是数,a0 2一玩一次方程的最简形式:ax=b其中x是未知数,a、b是数,a0 3解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。 4一元一次方程有唯一的一个解。 2、一元二次方程 1一元二次方程
13、的一般形式:其中x是未知数,a、b、c是数,a0 2一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 3一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。 4一元二次方程的根的判别式: 当0时方程有两个不相等的实数根; 当=0时方程有两个相等的实数根; 当0图像与y轴交点在x轴上方;c=0图像过原点;c0图像与y轴交点在x轴下方; 3a,b决定抛物线对称轴的位置:a,b同号,对称轴在y轴左侧;b0,对称轴是y轴; a,b异号。对称轴在y轴右侧;3、反比例函数: 4、正比例函数与反比例函数的对照表:第七章:统计初步一、总体和样本: 在统计时,我们把所要考察的对
14、象的全体叫做总体,其中每一考察对象叫做个体。从总体中抽取的一局部个体叫做总体的一个样本,样本中个体的数目叫做样本容量。 二、反映数据集中趋势的特征数 1、平均数 1的平均数, 2加权平均数:如果n个数据中,出现次,出现次,出现次这里,那么 3平均数的简化计算: 当一组数据中各数据的数值较大,并且都与常数a接近时,设的平均数为那么:。 2、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。 3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。一组数据的众数可能不止一个。 三、反映数据波动大小
15、的特征数: 1、方差: l的方差, 2简化计算公式:为较小整数时用这个公式要比拟方便 3记的方差为,设a为常数,的方差为,那么=。 注:当各数据较大而常数a较接近时,用该法计算方差较简便。 2、标准差:方差的算术平方根叫做标准差S。 注:通常由方差求标准差。 四、频率分布 1、有关概念 1分组:将一组数据按照统一的标准分成假设干组称为分组,当数据在100个以内时,通常分成512组。 2频数:每个小组内的数据的个数叫做该组的频数。各个小组的频数之和等于数据总数n。 3频率:每个小组的频数与数据总数n的比值叫做这一小组的频率,各小组频率之和为l。 4频率分布表:将一组数据的分组及各组相应的频数、频
16、率所列成的表格叫做频率分布表。 5频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。 图中每个小长方形的高等于该组的频率除以组距。 每个小长方形的面积等于该组的频率。 所有小长方形的面积之和等于各组频率之和等于1。 样本的频率分布反映样本中各数据的个数分别占样本容量n的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。 2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:1计算最大值与最小值的差;2决定组距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 数学 知识点 章节 汇总 试题 试卷
限制150内