2018年中考一次函数与反比例函数复习(共46页).docx
《2018年中考一次函数与反比例函数复习(共46页).docx》由会员分享,可在线阅读,更多相关《2018年中考一次函数与反比例函数复习(共46页).docx(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2018年中考一次函数与反比例函数复习板块教学目标A级目标B级目标C级目标平面直角坐标系认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;了解特殊位置的点的坐标特征能在方格纸上建立适当的直角坐标系,描述物体的位置和变化;会由点的特殊位置,求点的坐标中相关字母的范围;会求已知点到坐标轴的距离;能用不同的方式确定物体的位置函数及其图象了解常量和变量的意义;了解函数的概念和三种表示方法;能举出函数的实例;会确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求函数值能用适当的函数表示法刻画某些实际问题中变量之间的关
2、系能探索具体问题中的数量关系和变化规律;结合函数关系的分析,能对变量的变化趋势进行初步预测;能结合图象对简单实际问题中的函数关系进行分析一次函数理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题反比例函数能结合具体问题了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质会根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题能用反比例函数解决某些实际问题一、 函数1、平面直角坐
3、标系板块一 平面直角坐标系1 有序实数对有顺序的两个数与组成的实数对,叫做有序实数对,记作注意:当时,和是不同的两个有序实数对2 平面直角坐标系楷体在平面内有两条公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫做横轴或轴,取向右的方向为正方向;铅直的数轴叫做纵轴或轴,取向上的方向为正方向,两数轴的交点叫做坐标原点;轴和轴统称为坐标轴;建立了直角坐标系的平面叫做坐标平面3 象限轴和轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫做第一象限,第二象限,第三象限,第四象限注意:(1) 两条坐标轴不属于任何一个象限(2) 如果所表示的平面直角坐标系具有实际意义时,要
4、在表示横轴,纵轴的字母后附上单位4 点的坐标对于坐标平面内的一点,过点分别向轴、轴作垂线,垂足在轴、轴上对应的数、分别叫做点的横坐标和纵坐标,有序实数对叫做点的坐标,记作坐标平面内的点与有序实数对是一一对应的注意:横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来板块二 坐标平面内特殊点的坐标特征2、 各象限内点的坐标特征点在第一象限;点在第二象限;点在第三象限;点在第四象限3、 坐标轴上点的坐标特征点在轴上,为任意实数;点在轴上,为任意实数;点即在轴上,又在轴上,即点的坐标为4、 两坐标轴夹角平分线上点的坐标特征点在第一、三象限夹角的角平分线上;点在第二、四象限夹角的角平分线上5、
5、平行于坐标轴的直线上的点的坐标特征平行于轴直线上的两点,其纵坐标相等,横坐标为两个不相等的实数;平行于轴直线上的两点,其横坐标相等,纵坐标为两个不相等的实数6、 坐标平面内对称点的坐标特征点关于轴的对称点是,即横坐标不变,纵坐标互为相反数点关于轴的对称点是,即纵坐标不变,横坐标互为相反数点关于坐标原点的对称点是,即横坐标互为相反数,纵坐标也互为相反数点关于点的对称点是2、函数及其图像板块一 函数的相关概念1常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量如在圆的面积公式中,是常数,是一个常量,而随的变化而变化,所以、是变量2自变量、因变量与函数在某一变化过程
6、中,有两个量,例如和,对于的每一个值,都有唯一的值与之对应,其中是自变量,是因变量,此时也称是的函数函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系注意:对于每一个给定的值,有一个唯一确定的值与之对应,否则就不是的函数例如就不是函数,因为当时,即有两个值与对应 对于每一个给定的值,可以有一个值与之对应,也可以有多个值与之对应例如在函数中,时,;时,板块二 函数自变量的取值范围 函数自变量的取值范围是指是函数有意义的自变量的取值的全体求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际在初中阶段,自变量的取值范围考虑下面几个方面:整式
7、:自变量的取值范围是任意实数分式:自变量的取值范围是使分母不为零的任意实数根式:当根指数为偶数时,被开方数为非负数零次幂或负整数次幂:使底数不为零的实数注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类板块三 函数的表示方法1函数的三种表示方法:列表法:通过列表表示函数的方法解析法:用数学式子表示函数的方法叫做解析法譬如:,图象法:用图象直观、形象地表示一个函数的方法2对函数的关系式(即解析式)的理解:函数关系式是等式例如就是一个函数关系式函数关系式中指明了那个是自变量
8、,哪个是函数通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数例如:中是自变量,是的函数函数关系式在书写时有顺序性例如:是表示是的函数,若写成就表示是的函数求与的函数关系时,必须是只用变量的代数式表示,得到的等式右边只含的代数式板块四 函数的图象1函数图象的概念:对于一个函数,如果把自变量和函数的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象2函数图象的画法列表; 描点; 连线3函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点中的,都是解析式方程的一个解反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上判
9、断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上二、 一次函数1、一次函数的图象及性质板块一 一次函数的概念一般地,形如(,是常数,)的函数,叫做一次函数,当时,即,这时即是前一节所学过的正比例函数一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式当,时,仍是一次函数当,时,它不是一次函数正比例函数是一次函数的特例,一次函数包括正比例函数板块二 一次函数的图象一次函数(,为常数)的图象是一条直线由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个
10、点,再连成直线即可如果这个函数是正比例函数,通常取,两点;如果这个函数是一般的一次函数(),通常取,即直线与两坐标轴的交点由函数图象的意义知,满足函数关系式的点在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做直线:,有时直接称为直线板块三 一次函数的性质一次函数,符号图象性质随的增大而增大随的增大而减小1一次函数图象的位置在一次函数中:当时,其图象一定经过一、三象限;当时,其图象一定经过二、四象限当时,图象与轴交点在轴上方,所以其图象一定经过一、二象限;当时,图象与轴交点在轴下方,所以其图象一定经过三、四象限反之,由
11、一次函数的图象的位置也可以确定其系数、的符号2一次函数图象的增减性 在一次函数中:当时,一次函数的图象从左到右上升,随的增大而增大;当时,一次函数的图象从左到右下降,随的增大而减小2、一次函数解析式的确定用待定系数法求一次函数解析式:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法用待定系数法求函数解析式的一般步骤:根据已知条件写出含有待定系数的解析式;将的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;解方程(组),得到待定系数的值;将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式3、一次函数的
12、应用4、一次函数与方程、不等式综合板块一 一次函数与一元一次方程的关系直线与x轴交点的横坐标,就是一元一次方程的解。求直线与x轴交点时,可令,得到方程,解方程得,直线交x轴于,就是直线与x轴交点的横坐标。板块二 一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为或(为常数,)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。板块三 一次函数与二元一次方程(组)的关系一次函数的解析式本身就是一个二元一次方程,直线上有无数个点,每个点的横纵坐标都满足二元一次方程,因此二元一次方程的解也就有无数个。5、一次函数与几何综合三、 反比例函数1、反比例函数
13、的图象及性质板块一 反比例函数的定义函数(为常数,)叫做反比例函数,其中叫做比例系数,是自变量,是函数,自变量的取值范围是不等于0的一切实数板块二 反比例函数的图象反比例函数(为常数,)的图象由两条曲线组成,每条曲线随着的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线反比例函数与()的图象关于轴对称,也关于轴对称板块三 反比例函数的性质反比例函数(为常数,)的图象是双曲线;当时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,随的增大而减小;当时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,随的增大而增大注意:反比例函
14、数()的取值范围是因此,图象是断开的两条曲线,画图象时,不要把两个分支连接起来叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当时,双曲线的两支分别在一、三象限,在每一个象限内,随的增大而减小这是由于,即或的缘故 如果笼统地叙述为时,随的增大而增大就是错误的由于反比例函数中自变量和函数的值都不能为零,所以图象和轴、轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势在画出的图象上要注明函数的解析式板块四 反比例函数解析式的求法 反比例函数的解析式中,只有一个系数,确定了的值,也就确定了反比例函数的解析式因此,只需给出一组、的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函
15、数的解析式板块五 比例系数的几何意义 过反比例函数,图象上一点,做两坐标轴的垂线,两垂足、原点、点组成一个矩形,矩形的面积.2、反比例函数的应用反比例函数在实际生活和科学领域都有广泛的应用,我们通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字转化为数学语言,再利用反比例函数的思想方法来解决实际问题1用反比例函数解决实际问题的方法和步骤(1)审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)根据常量与变量之间的关系,设出函数的关系式,待定的系数用字母来表示;(3)有题目中的已知条件列出方程,求出待定系数(4)写出函数关系式,并注意关系式中的变量的取值范围(5)用函数关系
16、去解决实际问题2运用反比例函数模型解实际问题时,要掌握一些基本的模型(1)当体(面)积为定值时,底面积(边长)与高成反比例函数关系(2)当工程总量为定值时,工作时间与工作效率成反比例函数关系(3)当力F所作的功一定时,力F与物体在F方向通过的距离s成反比例函数关系;(4)杠杆定律:力力臂=定值(5)压强公式:P=FS,其中p为压强,F为压力,S为受力面积;3用反比例函数解决实际问题时应注意几个问题:(1)设未知量要恰当恰当地设未知量可以使运算简单,解题过程简单,计算准确率高,否则将会带来不必要的麻烦(2)求出函数关系式后,要注意字母(或自变量)的取值范围:一般在实际问题中,自变量的取值范围都是
17、非负的有的取值范围只能是某一些范围内的数(3)求出问题的解,既要符合题目中的方程,还要符合问题中的实际意义3、反比例函数与一次函数综合4、反比例函数与几何综合 板块一:平面直角坐标系与函数考点一:平面直角坐标系中点的特征例1(2013淄博)如果m是任意实数,则点P(m-4,m+1)一定不在()A第一象限B第二象限C第三象限D第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答解:(m+1)-(m-4)=m+1-m+4=5,点P的纵坐标一定大于横坐标,第四象限的点的横坐标是正数,纵坐标是负数,第四象限的点的横坐标一定大于纵坐标,点P一定不在第四象限故选D点评:本题考
18、查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)对应训练1(2013宁夏)点P(a,a-3)在第四象限,则a的取值范围是 .10a3考点二:规律型点的坐标例2(2013济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A(1,4)B(5,0)C(6,4)D(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对
19、应的点的坐标即可解:如图,经过6次反弹后动点回到出发点(0,3),20136=3353,当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3)故选D点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点对应训练2(2013江都市一模)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是()A(2,0)B(-1,
20、1)C(-2,1)D(-1,-1)2A考点三:函数自变量的取值范围例3 (2013常德)函数y=中自变量x的取值范围是()Ax-3Bx3Cx0且x1Dx-3且x1思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解解:根据题意得,x+30且x-10,解得x-3且x1故选D点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负对应训练3(2013泸州)函数y=自变量x的取值范围是()Ax1且x3Bx1Cx3Dx1且x33A考点四:函数的图象例4
21、 (2013重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家其中x表示童童从家出发后所用时间,y表示童童离家的距离下面能反映y与x的函数关系的大致图象是()ABCD思路分析:童童的行程分为5段,离家至轻轨站;在轻轨站等一会;搭乘轻轨去奥体中心,观看比赛,乘车回家,对照各函数图象即可作出判断解:离家至轻轨站,y由0缓慢增加;在轻轨站等一会,y不变;搭乘轻轨去奥体中心,y快速增加;观看比赛,y不变;乘车回家,y快速减小结合选项可判断B选项的函数图象符合童童的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 一次 函数 反比例 复习 46
限制150内