2022年中考数学总复习资料(备考大全)(1)试题(试卷).doc
《2022年中考数学总复习资料(备考大全)(1)试题(试卷).doc》由会员分享,可在线阅读,更多相关《2022年中考数学总复习资料(备考大全)(1)试题(试卷).doc(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本文档为独家精品文档尊重原创 切勿盗版以下资源均为最新版感谢您的支持代数局部第一章:实数根底知识点:一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定意义的数,如、等。3、判断一个实数的数性不能仅凭外表上的感觉,往往要经过整理化简后才下结论。二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。1实数a的相反数是 -a; 2a和b互为相反数a+b=02、倒数:1实数aa0的倒数是;2a和b 互为倒数;3注意0没有倒数3、绝对值:1一个数a 的绝对值有以下三种情况:2
2、实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。3去掉绝对值符号化简必须要对绝对值符号里面的实数进行数性正、负确认,再去掉绝对值符号。4、n次方根1平方根,算术平方根:设a0,称叫a的平方根,叫a的算术平方根。2正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。3立方根:叫实数a的立方根。4一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一
3、个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比拟1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。五、实数的运算1、加法:1同号两数相加,取原来的符号,并把它们的绝对值相加;2异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。2、减法:减去一个数等于加上这个数的相反数。3、乘法:1两数相乘,同号取正,异号取负,并把绝对值相乘。2n个实数相乘,有一个因数为0,积就为0;假设n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时
4、,积为正;当负因数为奇数个时,积为负。3乘法可使用乘法交换律、乘法结合律、乘法分配律。4、除法:1两数相除,同号得正,异号得负,并把绝对值相除。2除以一个数等于乘以这个数的倒数。30除以任何数都等于0,0不能做被除数。5、乘方与开方:乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。六、有效数字和科学记数法1、科学记数法:设N0,那么N= a其中1a10,n为整数。2、有效数字:一个近似数,
5、从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:1精确到那一位;2保存几个有效数字。例题:例1、实数a、b在数轴上的对应点的位置如下图,且。化简:分析:从数轴上a、b两点的位置可以看到:a0,b0且所以可得:解:例2、假设,比拟a、b、c的大小。分析:;c0;所以容易得出:abc。解:略例3、假设互为相反数,求a+b的值分析:由绝对值非负特性,可知,又由题意可知:所以只能是:a2=0,b+2=0,即a=2,b= 2 ,所以a+b=0 解:略例4、a与b互为相反数,c与d互为倒数,m的绝对值是1,求的值。解:原式=例5、计算:1 2解:1原式=2
6、原式=代数局部第二章:代数式根底知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。3、代数式的分类:二、整式的有关概念及运算1、概念1单项式:像x、7、,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。2多项式:几个单项式的和叫做多项式。多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。多项式的次数:多项式里
7、,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升降幂排列:把一个多项式按某一个字母的指数从小大到大小的顺序排列起来,叫做把多项式按这个字母升降幂排列。3同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。2、运算1整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。 去括号法那么:括号前面是“+号,把括号和它前面的“+号去掉,括号里各项都不变;括号前面是“号,把括号和它前面的“号去掉,括号里的各项都变号。 添括号法那么:括号前面是“+号,括到括号里的各项都不变;括号前面是“号,括到括号里的各项都变号。 整式的加减实际上就是合并同
8、类项,在运算时,如果遇到括号,先去括号,再合并同类项。 2整式的乘除: 幂的运算法那么:其中m、n都是正整数 同底数幂相乘:;同底数幂相除:;幂的乘方:积的乘方:。 单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式。 单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。 单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,那么连同它的指数作为商的一个因式
9、。 多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式: 平方差公式:;完全平方公式:,三、因式分解 1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。 2、常用的因式分解方法: 1提取公因式法: 2运用公式法:平方差公式:;完全平方公式:3十字相乘法:4分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。5运用求根公式法:假设的两个根是、,那么有:3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提公因式;2提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;3对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。4
10、最后考虑用分组分解法。四、分式 1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。 1分式无意义:B=0时,分式无意义; B0时,分式有意义。 2分式的值为0:A=0,B0时,分式的值等于0。 3分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。 4最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最终结果假设是分式,一定要化为最简分式。 5通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。 6最简公分母:各分式的分母所有因式的最高次幂的积。 7有理式:整式和分式统称有理式。
11、 2、分式的根本性质: 1;2 3分式的变号法那么:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算: 1加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。 2乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。 3除:除以一个分式等于乘上它的倒数式。 4乘方:分式的乘方就是把分子、分母分别乘方。五、二次根式 1、二次根式的概念:式子叫做二次根式。 1最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。 2同类二次根式:化为最简二次根
12、式之后,被开方数相同的二次根式,叫做同类二次根式。 3分母有理化:把分母中的根号化去叫做分母有理化。 4有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式常用的有理化因式有:与;与 2、二次根式的性质: 1 ;2;3a0,b0;4 3、运算: 1二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。 2二次根式的乘法:a0,b0。 3二次根式的除法: 二次根式运算的最终结果如果是根式,要化成最简二次根式。例题:一、因式分解: 1、提公因式法:例1、分析:先提公因式,后用平方差公式解:略规律总结因式分解本着先提取,后公式等,但应
13、把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。2、十字相乘法:例2、1;2分析:可看成是和(x+y)的二次三项式,先用十字相乘法,初步分解。解:略规律总结应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。3、分组分解法:例3、分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。解:略规律总结对多项式适当分组转化成根本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。4、求根公式法:例4、解:略二、式的运算巧用公式 例5、计算:分析:运用平方差公式因式分解,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 数学 复习资料 备考 大全 试题 试卷
限制150内