初三数学复习-数与式(知识点讲解).doc
《初三数学复习-数与式(知识点讲解).doc》由会员分享,可在线阅读,更多相关《初三数学复习-数与式(知识点讲解).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初三数学复习 数与式 第一课时 实数的有关概念【知识要点】(一)实数的有关概念 (1)实数的分类 当然还可以分为:正实数、零、负实数。 有理数还可以分为:正有理数,零,负有理数 (2)数轴: 数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。 (3)绝对值 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。 (4)相反数、倒数 若a、b两个数为互为相反数,则a+b=0。 若m、n两个数互为倒数,则mn=1。 (5
2、)三种非负数: “几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。(6)平方根、算术平方根、立方根的概念。如果一个数的平方等于a,这个数就叫做a的平方根一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根a(a0)的平方根记作 一个正数a的正的平方根,叫做a的算术平方根a(a0)的算术平方根记作 (7)科学计数法、有效数字和近似值的概念。1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字3.科学记数法:把一个数
3、用 (1 10,n为整数)的形式记数的方法叫科学记数法【典型例题:】P2例1、(2012贵州六盘水,5,3分)数字,中无理数的个数是( )A1 B2 C3 D4点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数(2)无理数是无限不循环小数,其中有开方开不尽的数(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数P2例4、(2012湖北省恩施市,题号16 分值 4)观察下表:根据表中数的排列规律,B+D=_.例题补充、(
4、2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报,第2位同学报,这样得到的20个数的积为_. 第二课时:实数的运算及比较大小【知识要点】一、实数的运算1.加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数2.减法:减去一个数等于加上这个数的相反数3.乘法:几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积
5、为负几个数相乘,有一个因数为0,积就为04.除法:除以一个数,等于乘上这个数的倒数两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方 (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方(3)零指数与负指数二、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b0 ab;a-b=0 a=b;a-b0 ab.
6、4.对于实数a,b,c,若ab,bc,则ac.5.无理数的比较大小:利用平方转化为有理数:如果 ab0,a2b2 则 ab ;或利用倒数转化:如比较 与 .三、实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算这三级运算的顺序是三、二、一如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算四、实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc【典型例题:】P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B与点C关于点A对称
7、,A、B两点对应的实数是和-1,则点C所对应的实数是( )A. 1+ B. 2+ C. 2-1 D. 2+1P4例 4(2012广东汕头,21,7分)观察下列等式:第1个等式:a1=(1);第2个等式:a2=();第3个等式:a3=();第4个等式:a4=();请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:an=(n为正整数);(3)求a1+a2+a3+a4+a100的值分析:(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为 序号的2倍减1和序号的2倍加1(3)运用变化规律
8、计算第三课时:整式与因式分解(一) :【整式知识梳理】 代数式的分类 1.整式有关概念 (1)单项式:只含有 的积的代数式叫做单项式。单项式中_叫做这个单项式的系数;单项式中_叫做这个单项式的次数; (2)多项式:几个 的和,叫做多项式。_ 叫做常数项。 多项式中_的次数,就是这个多项式的次数。多项式中_的个数,就是这个多项式的项数。2.同类项、合并同类项(1)同类项:_ 叫做同类项;(2)合并同类项:_ 叫做合并同类项;(3)合并同类项法则: (4)去括号法则:括号前是“”号,_ 括号前是“”号,_ (5)添括号法则:添括号后,括号前是“+”号,插到括号里的各项的符号都 ;括号前是“”号,括
9、到括号里的各项的符号都 。3.整式的运算(1)整式的加减法:运算实质上就是合并同类项,遇到括号要先去括号。(2)整式的乘除法: 4.幂的运算:同底数幂的乘法,底数不变,指数相加。即:(,都是正整数)。 幂的乘方,底数不变,指数相乘。即:(,都是正整数)。 积的乘方等于每一个因数乘方的积。即:(是正整数)同底数幂相除,底数不变,指数相减。即:( ), ,()5、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 (2)单项式乘以多项式: 。(3)乘法公式:平方差: 。完全平方公式: 。6.整式的除法:(1)单项式相除:把它们的系数、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 复习 知识点 讲解
限制150内