北师大版七年级下册数学概率初步教案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北师大版七年级下册数学概率初步教案.doc》由会员分享,可在线阅读,更多相关《北师大版七年级下册数学概率初步教案.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上昭仁中学七年级数学学科导学案科目数学内容感受可能性课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习 目标1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断。2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。 3.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。重点1.随机事件的特点并能对生活中的随机事件做出准确判断;2.对随机事件发生的可能性大小的定性分析。难点1.随机事件的特点并能对生活中
2、的随机事件做出准确判断;2.对随机事件发生的可能性大小的定性分析。教学过程:因材施教以学定教 学习过程:先入为主自主学习学习课本P136-138,思考下列问题:1. 在一定条件下一定发生的事件,叫做 ;在一定条件下一定不会发生的事件,叫做 ; 和 统称为确定事件。 2.在一定条件下可能发生也可能不发生的事件,叫做 ,也称为 。2下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件? (1)太阳从西边下山; (2)某人的体温是100; (3)a2+b2=1(其中a,b都是有理数); (4)水往低处流; (5)13个人中,至少有两个人出生的月份相同; (6)在装有3个球的布袋里摸出4个球。3填
3、空: 确定事件 事件 个案补充1汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探究案1、5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?2、小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次
4、骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?4、检测:强化变式训练5、延伸:评价拓展提升检测案1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。事件A和事件B是随机事件吗?哪个事件发生的可能性大?2、20张卡片上分别写着1,2,3,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?3、80件产品中,有50件一等品,20件二等品,10件三等品,
5、从中任取一件,取到哪种产品的可能性最大?取到哪种产品的可能性最小?为什么? 我的 收获昭仁中学七年级数学学科导学案科目数学内容频率的稳定性(1)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习 目标1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验-收集数据-分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重点1.在具体情境中了解概率意义;2.对频率与概率关系的初步理解。难点1.在具体情境中了解概率意义;2.对频率与概率关系的初步理解。教学过程:因材施教以学定教
6、学习过程:先入为主自主学习学习课本P140-144,思考下列问题:1、 什么叫概率?2、 P(A) 的取值范围是什么?3、 A是必然事件,B是不可能事件,C是随机事件,请你画出数轴把三个量表示出来。个案补充1汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探究案抛硬币实验 把全班学生分成24个小组做抛图钉试验,每组同学抛掷20次,并整理获得的实验数据记录在下面的统计表中。试验总次数钉尖朝上的次数钉尖朝下的次数钉尖朝上的频率钉尖朝下的频率抛掷次数20406080100120350400450500“钉尖向上”的频数 “钉尖向上”的频率4、检测:强化变式训练5、延伸:评价拓展提
7、升检测案1.下表记录了一名球员在罚球线上投篮的结果投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)计算表中投中的频率(精确到0.01)并总结其规律。我的 收获昭仁中学七年级数学学科导学案科目数学内容频率的稳定性(2)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习 目标1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验-收集数据-分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重点1.在具体
8、情境中了解概率意义;2.对频率与概率关系的初步理解。难点1.在具体情境中了解概率意义;2.对频率与概率关系的初步理解。教学过程:因材施教以学定教 学习过程:先入为主自主学习1:你能理解频率的稳定性吗?如何利用频率估计概率?试验总次数20正面(壹圆)朝上的次数正面朝下的次数正面朝上的频率正面朝下的频率1、同桌两人做20次掷壹圆硬币的游戏,并将数据填在右表中:2、各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成右表:3、根据已填的表格,完成下面的折线统计图:试验总次数20406080100120140160180200正面朝
9、上的次数正面朝上的频率正面朝下的次数正面朝下的频率观察上面的统计表,你发现了 。个案补充1汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探究案1、 某事件发生的可能性如下:请选择:(1)有可能,但不一定发生; ( ) 发生与不发生的可能性一样; ( )发生可能性极少; ( ) 不可能发生。 ( ) A、0.1% B、50% C、0 D、99.992、对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数 n1020501002005001000优等品数 m7164381164414825优等品率 m/n(1)完成上表;(2)根据上表,在这批乒乓球中任取一个,它
10、为优等品的概率是多少?(3)如果再抽取1000个乒乓球进行质量检查,对比上表记录下数据,两表的结果会一样吗?为什么?4、检测:强化变式训练5、延伸:评价拓展提升检测案2.小颖有20张大小相同的卡片,上面写有120这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数204060801001201401601802003的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于数值 左右(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是 (4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率
11、应该是 3.完成教材P145随堂练习我的 收获昭仁中学七年级数学学科导学案科目数学内容等可能事件的概率(1)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习 目标1.理解等可能事件的意义; 2.理解等可能事件的概率P(A)=(在一次试验中有n种可能的结果,其中A包含m种)的意义; 3.应用P(A)=解决一些实际问题重点应用P(A)=解决一些实际问题。难点应用P(A)=解决一些实际问题。教学过程:因材施教以学定教 学习过程:先入为主自主学习学习课本P147-150,思考下列问题:1从一副牌中任意抽出一张,P(抽到王)=_,P(抽到红桃)=_,P(抽到3)=_2.掷一枚均匀的骰子,P(掷
12、出“2”朝上)=_,P(掷出奇数朝上)=_,P(掷出不大于2的朝上)=_ 3.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4。现将它们的背面朝上,从中任意摸到一张卡片,则P(摸到1号卡片)=_,P(摸到2号卡片)=_,P(摸到3号卡片)=_,P(摸到4号卡片)=_,P(摸到奇数号卡片)=_,P(摸到偶数号卡片)=_。个案补充1汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探究案1: 从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的号码有 种可能,即 ,由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性 ,都是 。
13、探究2: 掷一个骰子,向上一面的点数有 种可能,即 ,由于骰子的构造、质地均匀,又是随机掷出的,所以我们断言:每种结果的可能性 ,都是 。 以上两个试验有两个共同的特点: 1.一次试验中,可能出现的结果有限多个. 2.一次试验中,各种结果发生的可能性相等. 对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率等可能事件概率的定义:一般地,如果一个试验有n种等可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)= 注: P(A) 。4、检测:强化变式训练5、延伸:评价拓展提升检测案1. 掷一个骰子
14、,观察向上的一面的点数,求下列事件的概率: (1)点数为4;(2)点数为偶数;(3)点数大于3小于5;巩固练习:教材P148 随堂练习和习题1至3.2一个袋中有2个红球和3个白球,每个球除颜色外其余特征均相同。(1) 任意摸出1个球,摸到红球的概率是 ;(2) 任意摸出1个球,摸到红球小明胜,摸到白球小凡胜,这个游戏对双方公平吗?如果不公平,怎样改变袋中球的数量才对双方公平?我的 收获昭仁中学七年级数学学科导学案科目数学内容等可能事件的概率(2)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习 目标1、在具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型;2、了解一类
15、事件发生概率的计算方法,并能进行简单的计算;3、能设计符合要求的简单概率模型重点概率模型概念的形成过程。难点分析概率模型的特点,总结概率的计算方法。教学过程:因材施教以学定教 学习过程:先入为主自主学习1、10个乒乓球中有8个一等品,2个二等品,从中任取一个是二等品的概率是_.2、把标有号码1,2,3,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是_3、现有三个布袋,里面放着已经搅匀了的小球,具体的数目如下表所示: 袋编号123布袋中球的数量和种类1个红球2个白球3个黑球3个白球3个黑球1个红球1个白球4个黑球从第一个口袋中任取一球是白球的概率_. 从第二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 下册 数学 概率 初步 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内