初高中数学衔接内容(共22页).doc
《初高中数学衔接内容(共22页).doc》由会员分享,可在线阅读,更多相关《初高中数学衔接内容(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初高中数学衔接教材专题一 数与式的运算1.1 绝对值1.2 乘法公式1.3 二次根式1. 分式专题二 分解因式专题三 一元二次方程专题四 函数4.1平面直角坐标系、一次函数、反比例函数4.2 二次函数yax2bxc的图像和性质4.3. 二次函数的三种表示方式4.4 二次函数的简单应用专题五 方程与不等式5.1 二元二次方程组解法5.2 一元二次不等式解法专题六 相似形6.1平行线分线段成比例定理6.2相似形专题七 三角形的“四心”专题八 圆8.1 直线与圆,圆与圆的位置关系8.2 点的轨迹专题一 数与式的运算1.1绝对值【要点回顾】1绝对值1绝对值的代数意义: 即 2
2、绝对值的几何意义: 的距离 3两个数的差的绝对值的几何意义:表示 的距离4两个绝对值不等式:;【例题选讲】例1 解下列不等式:(1) (2)4练 习1填空:(1)若,则x=_;若,则x=_.(2)如果,且,则b_;若,则c_.2选择题:下列叙述正确的是 ( )(A)若,则 (B)若,则 (C)若,则 (D)若,则3化简:|x5|2x13|(x5)4、解答题:已知,求 的值.1.2. 乘法公式乘法公式我们在初中已经学习过了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我们还可以通过证明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)【例题选讲
3、】例1 计算: (1) (2)(3) (4)例2 已知,求的值练 习1填空:(1)( );(2) ;(3) 2选择题:(1)若是一个完全平方式,则等于 ( )(A) (B) (C) (D)(2)不论,为何实数,的值 ( ) (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数1.3二次根式1式子叫做二次根式,其性质如下:(1) ;(2) ;(3) ; (4) 2平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根3立方根的概念: 叫做的立方根,记为例1.将下列式子化为最简二次根式:(1); (2); (3) (4) 例2 计算:(1) (2) (3) (
4、4) 例3化简:(1); (2)练习1填空:(1)若,则的取值范围是_ _ _;(3)_ _;(4)若,则_ _2选择题:等式成立的条件是 ( )(A) (B) (C) (D)3、若,求的值4、解答:设,求代数式的值1.分式 1分式的意义 形如的式子,若B中含有字母,且,则称为分式当时,分式具有下列性质: (1) ; (2) 2繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式, 3分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号
5、的过程例1若,求常数的值例2(1)试证:(其中n是正整数); (2)计算:; (3)证明:对任意大于1的正整数n, 有例3设,且e1,2c25ac2a20,求e的值练 习1填空题:对任意的正整数n, ();2选择题:若,则 ( )(A) (B) (C) (D)3正数满足,求的值4计算专题检测(一) 1解不等式: (1) ; (2) ; (3) 2填空:(1)_;(2)若,则的取值范围是_;(3)_(4),则_ _;(5)若,则_ _;3选择题:(1)若,则 ( )(A) (B) (C) (D)(2)计算等于 ( )(A) (B) (C) (D)4求值(1)已知,求的值(2)已知:,求的值5解方
6、程6计算:7试证:对任意的正整数n,有专题二 因式分解【要点回顾】 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算、解方程及各种恒等变形中起着重要的作用是一种重要的基本技能因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等1公式法常用的乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 45(立方和公式)6 (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,运用上述公式可以进行因式分解2分组分解法 从前面可以看出,
7、能够直接运用公式法分解的多项式,主要是二项式和三项式而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取因此,可以先将多项式分组处理这种利用分组来因式分解的方法叫做分组分解法分组分解法的关键在于如何分组常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式3十字相乘法(1)型的因式分解 这类式子在许多问题中经常出现,其特点是:二次项系数是1;常数项是两个数之积; 一次项系数是常数项的两个因数之和,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式(2)一般二次三项式型的因式分解由我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果
8、它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解4其它因式分解的方法其他常用的因式分解的方法:(1)配方法 (2)拆、添项法【例题选讲】例 分解因式: (1) (2) (3); (4) (5) (6)(7) (8) (9) (10) (11) (12) 练习1分解因式:(1) ; (2); (3); (4)(5) ; (6); (7); (8)3三边,满足,试判定的形状4分解因式:x2x(
9、a2a)专题三 一元二次方程【要点回顾】1一元二次方程的根的判断式一元二次方程,用配方法将其变形为: 由于可以用的取值情况来判定一元二次方程的根的情况因此,把叫做一元二次方程的根的判别式,表示为:对于一元二次方程ax2bxc0(a0),有1当 0时,方程有两个不相等的实数根: ;2当 0时,方程有两个相等的实数根: ;3当 0时,方程没有实数根2一元二次方程的根与系数的关系(韦达定理)定理:如果一元二次方程的两个根为,那么: 说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”上述定理成立的前提是 特别地,对于二次项系数为1的一元二次方程x2pxq0
10、,若x1,x2是其两根,由韦达定理可知 x1x2p,x1x2q,即 p(x1x2),qx1x2,所以,方程x2pxq0可化为 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有 以两个数x1,x2为根的一元二次方程(二次项系数为1)是 x2(x1x2)xx1x20【例题选讲】例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根(1)x23x30; (2)x2ax10; (3) x2ax(a1)0; (4)x22xa0例2 已知方程的一个根是2,求它的另一个根及k的值
11、例3 已知关于x的方程x22(m2)xm240有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值例4 已知两个数的和为4,积为12,求这两个数例5 若x1和x2分别是一元二次方程2x25x30的两根(1)求| x1x2|的值; (2)求的值;(3)x13x23一般规律:若x1和x2分别是一元二次方程ax2bxc0(a0),则| x1x2|(其中b24ac)例6 若关于x的一元二次方程x2xa40的一根大于零、另一根小于零,求实数a的取值范围练 习1选择题:(1)方程的根的情况是 ( ) (A)有一个实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)没有实数根(2
12、)若关于x的方程mx2 (2m1)xm0有两个不相等的实数根,则实数m的取值范围是 ( ) (A)m (B)m (C)m,且m0 (D)m,且m0 2填空:(1)若方程x23x10的两根分别是x1和x2,则 (2)方程mx2x2m0(m0)的根的情况是 (3)以3和1为根的一元二次方程是 3已知,当k取何值时,方程kx2axb0有两个不相等的实数根?4已知方程x23x10的两根为x1和x2,求(x13)( x23)的值专题检测A 组1选择题:(1)已知关于x的方程x2kx20的一个根是1,则它的另一个根是( ) (A)3 (B)3 (C)2 (D)2(2)下列四个说法: 方程x22x70的两根
13、之和为2,两根之积为7;方程x22x70的两根之和为2,两根之积为7;方程3 x270的两根之和为0,两根之积为;方程3 x22x0的两根之和为2,两根之积为0其中正确说法的个数是 ( ) (A)1个 (B)2个 (C)3个 (D)4个(3)关于x的一元二次方程ax25xa2a0的一个根是0,则a的值是( )(A)0 (B)1 (C)1 (D)0,或1(4)若关于x的方程x2(k21) xk10的两根互为相反数,则k的值为( ) (A)1,或1 (B)1 (C)1 (D)02填空:(1)方程kx24x10的两根之和为2,则k (2)方程2x2x40的两根为,则22 (3)已知关于x的方程x2a
14、x3a0的一个根是2,则它的另一个根是 (4)方程2x22x10的两根为x1和x2,则| x1x2| (5)若m,n是方程x22005x10的两个实数根,则m2nmn2mn的值等于 (6)如果a,b是方程x2x10的两个实数根,那么代数式a3a2bab2b3的值是 3试判定当m取何值时,关于x的一元二次方程m2x2(2m1) x10有两个不相等的实数根?有两个相等的实数根?没有实数根?4求一个一元二次方程,使它的两根分别是方程x27x10各根的相反数5已知关于x的方程x2kx20(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1x2)x1x2,求实数k的取值范围
15、6一元二次方程ax2bxc0(a0)的两根为x1和x2求:(1)| x1x2|和;(2)x13x23B 组1选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x28x70的两根,则这个直角三角形的斜边长等于 ( ) (A) (B)3 (C)6 (D)9(2)若x1,x2是方程2x24x10的两个根,则的值为 ( ) (A)6 (B)4 (C)3 (D)(3)如果关于x的方程x22(1m)xm20有两实数根,则的取值范围为 ( ) (A) (B) (C)1 (D)1 (4)已知a,b,c是ABC的三边长,那么方程cx2(ab)x0的根的情况是 ( ) (A)没有实数根 (B)有两个不相等
16、的实数根(C)有两个相等的实数根 (D)有两个异号实数根2填空:若方程x28xm0的两根为x1,x2,且3x12x218,则m 3关于x的方程x24xm0的两根为x1,x2满足| x1x2|2,求实数m的值4 已知x1,x2是关于x的一元二次方程4kx24kxk10的两个实数根(1)是否存在实数k,使(2x1x2)( x12 x2)成立?若存在,求出k的值;若不存在,说明理由;(2)求使2的值为整数的实数k的整数值;(3)若k2,试求的值5已知关于x的方程(1)求证:无论m取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|x1|2,求m的值及相应的x1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 衔接 内容 22
限制150内