全等三角形优秀课件3.ppt
《全等三角形优秀课件3.ppt》由会员分享,可在线阅读,更多相关《全等三角形优秀课件3.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、一、全等三角形的概念及其性质全等三角形的定义:全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 ,重合的点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。全等三角形性质:全等三角形性质:(1) 对应边相等 (2)对应角相等(3)周长相等 (4)面积相等注意:“全等”的记法“ ”,全等变换:平移、旋转、翻转。例1、已知如图(1),ABC DCB ,对应边:_与_,_与_,_与_,对应角:_与_,_与_,_与_.1.1.请指出图中全等三角形的对应边和对应角请指出图中全等三角形的对应边和对应角2 2、图中、图中 ABD ABD CDB,CDB,则则AB=AB= ;AD=AD= ;B
2、D=BD= ; ABD=_ABD=_ ; ADB=_ADB=_ ; A=_A=_ ; CDCBBDCDBCBDCAB与与CD、AD与与CB、BD与与DBABD与与CDB、ADB与与CBD、A与与C有公共边的,公共边是对应边有公共边的,公共边是对应边. .有公共角的,公共角是对应角有公共角的,公共角是对应角. .有对顶角的,对顶角是对应角有对顶角的,对顶角是对应角. .一对最长的边是对应边,一对最长的边是对应边, 一对最短的边是对应边一对最短的边是对应边. .一对最大的角是对应角,一对最大的角是对应角, 一对最小的角是对应角一对最小的角是对应角. .在找全等三角形的对应元素时一般有什在找全等三角
3、形的对应元素时一般有什么么规律规律?3、如图、如图ABD EBC,AB=3cm,BC=5cm,求求DE的长的长解:解:ABD EBCAB=EB、BD=BCBD=DE+EBDE=BD-EB =BC-AB =5-3=2cm知识回顾:知识回顾:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS5.AAS. .直角三角形直角三角形 全等全等特有特有的条件:的条件:HLHL. .包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法练习
4、练习1:如图,:如图,AB=AD,CB=CD. 求证求证: AC 平分平分BADADCB证明:在证明:在ABC和和ADC中中 AC=AC AB=AD CB=CD ABC ADC (SSS) BAC= DAC AC平分平分BAD2、如图,、如图,D在在AB上,上,E在在AC上,上,AB=AC ,B=C, 试问试问AD=AE吗?吗?为什么?为什么?EDCBA解解: AD=AE理由:理由: 在在ACD和和ABE中中 B=C AB=AC A=A ACD ABE (ASA) AD=AE3、如图,、如图,OBAB,OCAC,垂足为垂足为B,C,OB=OCAO平分平分BAC吗?为什么?吗?为什么?OCBA答
5、:答: AO平分平分BAC理由:理由: OBAB,OCAC B=C=90 在在RtABO和和RtACO中中 OB=OC AO=AO RtABO RtACO (HL) BAO=CAO AO平分平分BAC 4、如图,、如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DCAB证明:在证明:在ABO和和CDO中中 OA=OC AOB= COD OB=OD ABO CDO (SAS) A= C DCABAODBC练习练习5: 如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,两块,他是否可以只带其中的一块碎片到商
6、店去,就能配一块与原来一样的三角形模具呢?如果可以,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?带那块去合适?为什么?BAFEDCBA6、如图,已知、如图,已知ACEF,DEBA,若使若使ABC EDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFBC=DFDC=BF7:已知:已知 AC=DB, 1=2. 求证求证: A=D21DCBA证明:在ABC和DCB中 AC=DB 1=2 BC=CB ABC DCB (SAS) A=D 8、如图,已知,如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对请问图中有
7、那几对全等三角形?请任选一对给予证明。给予证明。FEDCBAABF DECCBF FECABC DEF答:答:9、如图,已知、如图,已知E在在AB上,上,1=2, 3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS) BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS) AC=AD10、已知,、已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 优秀 课件
限制150内