2022年小升初数学专项训练+典型例题分析-数论篇(教师版)试题(试卷).doc
《2022年小升初数学专项训练+典型例题分析-数论篇(教师版)试题(试卷).doc》由会员分享,可在线阅读,更多相关《2022年小升初数学专项训练+典型例题分析-数论篇(教师版)试题(试卷).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本文档为独家精品文档尊重原创 切勿盗版以下资源均为最新版感谢您的支持名校真题 测试卷 数论篇一时间:15分钟 总分值5分 姓名_ 测试成绩_1 13年人大附中考题有_个四位数满足以下条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 13年101中学考题如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是。 3 13年首师附中考题+=。 4 04年人大附中考题甲、乙、丙代表互不相同的3个正整数,并且满足:甲甲=乙+乙=丙135那么甲最小是_。5 (02年人大附中考题)以下数不是八进制数的是( )A、125 B、126 C、1
2、27 D、128 【附答案】1 【解】:62 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。3 【解】:周期性数字,每个数约分后为+=14 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数乙+乙,这样我们分解135=5333,所以丙最小应该是2253,所以甲最小是:2335=90。5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。希望考入重点中学?奥数网是我们成就梦想的地方! 小升初专项训练 数论篇一一、小升初考试热点及命题方向数论是历年小
3、升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比拟强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。二、考点预测的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题那么需综合运用数的整除,质数与合数,约数倍数以及整数的分拆等方法,希望同学们全面掌握数论的几大知识点,能否在考试中取得高分解出数论的压轴大题是关键。三、根本公
4、式1b|c,a|c,那么a,b|c,特别地,假设(a,b)=1,那么有ab|c。讲解练习:假设3a75b能被72整除,问a=,b=.迎春杯试题2c|ab,(b,c)=1,那么c|a。3唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 p2.pk#)其中p1p2.bcd那么从小到大的第5个就是dacb,它是5的倍数,因此b=0或5,注意到bcd,所以b=5;从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,cb=5,c=4或2从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4;因为ab,所以a至少是6,那
5、么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。因此d=3,从而a=d+4=3+4=7。这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3所以这24个四位数中最大的一个是7543。【例2】一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?思路:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手【解】:5位数数字和最大的为95=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。
6、这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。【例3】由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【解】:各位数字和为1+3+4+5+7+8=28所以偶数位和奇数位上数字和均为14为了使得该数最大,首位必须是8,第2位是7,14-8=6那么第3位一定是5,第5位为1该数最大为875413。拓展:一个三位数,它由0,1,2,7,8组成,且它能被9整除,问满足条件的总共有几个? 【例4】一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7 ,女同学的人数超过总数的2/5 。问男女生各多少人? 【来源
7、】:12年理工附入学测试题【解】:男生超过总数的4/7就是说女生少个总数的3/7,这样女生的范围在2/53/7之间,同理可得男生在4/73/5之间,这样把分数扩大,我们可得女生人数在28/7030/70之间,所以只能是29人,这样男生为41人。2 质数与合数分解质因数 【例5】2005684375最后4位都是0,请问里最小是几?【解】:先分析123410的积的末尾共有多少个0。由于分解出2的个数比5多,这样我们可以得出就看所有数字中能分解出多少个5这个质因数。而能分解出5的一定是5的倍数。注意:5的倍数能分解一个5,25的倍数分解出2个5,125的倍数能分解出3个5最终转化成计数问题,如5的倍
8、数有10/5=2个。2005=5401 684=22171 375=3555前三个数里有2个质因子2,4个质因子5,要使得乘积的最后4位都是0应该有4个质因子2和4个质因子5,还差2个质因子。因此里最小是4。拓展:2005684375最后4位都是0,且是7的倍数,问里最小是_【例6】03 年101中学招生人数是一个平方数,04年由于信息发布及时,04年的招生人数比03年多了101人,也是一个平方数,问04年的招生人数?【解】:看见两个平方数,发现跟平方差相关,这样我们大胆的设03年的为A,04年的为B,从中我们发现04年的比03年多101人,这样我们可以列式子B- A=101此后思路要很顺,因
9、为看见平方差只有一种方法那就是按公式展开,所以B- A=A+BA-B=101,可见右边的数也要分成2个数的积,还得考虑同奇偶性,但101是个质数,所以101只能分成1011,这样A+B=101,A-B=1,所以A=50,B=51,所以04年的招生人数为5151=2601。拓展:一个数加上10,减去10都是平方数,问这个数为多少?清华附中测试题3 约数和倍数【例7】从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的局部不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?【解】:边长是20
10、02和847的最大公约数,可用辗转相除法求得 2002,847=77所以最后剪得的正方形的边长是77毫米。辗转相除例如:2002847=2308 求2个数的最大公约数,就用大数除以小数847308=2231 用上一个式子的除数除以余数一直除到除尽为止308231=177 用上一个式子的除数除以余数一直除到除尽为止23177=3 最后一个除尽的式子的除数就是两个数的最大公约数【例8】一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?【解】:100能被5整除,所以每5米作标记线从左往右还是从右往左都是一样的。这样我们都以从左往右作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年小升初 数学 专项 训练 典型 例题 分析 数论 教师版 试题 试卷
限制150内