14二次函数的应用(2)吴国庆.ppt
《14二次函数的应用(2)吴国庆.ppt》由会员分享,可在线阅读,更多相关《14二次函数的应用(2)吴国庆.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新浙教版数学九年级(上)新浙教版数学九年级(上)1.4 1.4 二次函数的应用二次函数的应用 (2 2)1.理解问题理解问题;“二次函数应用” 的思路 w本节本节“最大面积最大面积”解决问题的过程,你能总结一解决问题的过程,你能总结一下解决此类问题的下解决此类问题的基本思路基本思路吗?与同伴交流吗?与同伴交流. .2.分析问题中的变量和常量分析问题中的变量和常量,以及它们之间的关系以及它们之间的关系;3.用数学的方式表示出它们之间的关系用数学的方式表示出它们之间的关系;4.做数学求解做数学求解;5.检验结果的合理性检验结果的合理性,拓展等拓展等.实际问题抽象抽象转化转化数学问题数学问题运用运用
2、数学知识数学知识问题得解问题得解返回解释返回解释检验检验-202462-4xy若若3x3,该函数的最,该函数的最大值、最小值分别为大值、最小值分别为( )、()、( )。)。 又若又若0 x3,该函数的,该函数的最大值、最小值分别为最大值、最小值分别为( )、()、( )。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么? ?55 555 131、图中所示的二次函数图像的、图中所示的二次函数图像的解析式为:解析式为: 13822xxy 某商品现在的售价为每件某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件,市场调查反件,市场调查反映:每涨价映:每涨价1元,每星期少
3、卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多卖出元,每星期可多卖出18件,已知商品的进价为每件件,已知商品的进价为每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?自变量?哪些量随之发生了变化? 某商品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少卖出元,每
4、星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因此,所得利润为因此,所
5、得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即6000100102xxy(0X30)6000100102xxy(0X30)625060005100510522最大值时,yabx可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式可数有最大值。由公式可以求出顶点的横坐标以求出顶
6、点的横坐标.元x元y625060005300所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元在降价的情况下,最大利润是多少?请你参考在降价的情况下,最大利润是多少?请你参考(1)的过的过程得出答案。程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖18x件,实件,实际卖出(际卖出(300+18x)件,销售额为件,销售额为(60-x)(300+18x)元,买元,买进商品需付进商品需付40(300-10 x)元,因此,得利润元,因此,得利润60506000356035183522最大时,当yabx答:定价为答:
7、定价为 元时,利润最大,最大利润为元时,利润最大,最大利润为6050元元 3158由由(1)(2)的讨论及现在的销售的讨论及现在的销售情况情况,你知道应该如何定价能你知道应该如何定价能使利润最大了吗使利润最大了吗?60006018183004018300602xxxxxy(0 x20):运用二次函数的性质求实际问题的最大值和最小值运用二次函数的性质求实际问题的最大值和最小值的一般步骤的一般步骤 : :求出函数解析式和自变量的取值范围求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必检查求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14 二次 函数 应用 吴国
限制150内