211数列的基本概念与简单表示法(2013418).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《211数列的基本概念与简单表示法(2013418).ppt》由会员分享,可在线阅读,更多相关《211数列的基本概念与简单表示法(2013418).ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章第二章 数数 列列2.12.1数列的概念与简单表示法(一)数列的概念与简单表示法(一)昆明市第昆明市第2424中学中学 云付泽云付泽学习目标学习目标1. 1. 理解数列的概念;理解数列的概念;2. 2. 掌握数列简单的几种表示方法;掌握数列简单的几种表示方法;3. 3. 了解数列是一种特殊的函数。了解数列是一种特殊的函数。目标达成目标达成1.通过数学文化、生活实例感知数列;通过数学文化、生活实例感知数列; 2.通过自主学习、探究性学习达成目标。通过自主学习、探究性学习达成目标。三角形数三角形数1, 3, 6, 10, . 正方形数正方形数1, 4, 9, 16, 观察下列图形:观察下列图
2、形:传说古希腊毕达哥拉斯学派数学家研究的问题:传说古希腊毕达哥拉斯学派数学家研究的问题:情境情境11214181161321 , , , , , , 情境情境24 4月月1010日至日至4 4月月1717日昆明的日昆明的日最高气温日最高气温日期日期4月月10日日4月月11日日4月月12日日4月月 13日日4月月14日日4月月15日日4月月16日日4月月17日日最高气温最高气温( )2321182020222119C(4)23, 21, 18, 20, 20, 22, 21, 19情境情境3(1)1, 3, 6, 10, . (2)1, 4, 9, 16, ,321,161,81,41,21,1
3、(3)共同特点:共同特点:1. 都是都是一列数一列数;2. 都有都有一定的顺序一定的顺序1.定义:定义:请问,是不是同一数列?请问,是不是同一数列?请问,是不是同一数列?请问,是不是同一数列?(数列具有数列具有顺序性顺序性)例例1: 数列数列 改改为为15 5 16 16 28 32, , 5 16 28 32, ,1516数列数列改为改为1 1 1 1 1 , , 1 1 1 1 1 , , , 按照一定顺序排列按照一定顺序排列的一列数叫做的一列数叫做目标目标1:理解数列的概念:理解数列的概念想一想想一想:数列与集合的区别是什么?数列与集合的区别是什么? (1 1)数列)数列aan n 中是
4、中是一列数一列数,而集合中,而集合中的元素的元素不一定是数;不一定是数; (2 2)数列)数列aan n 中的数是中的数是有一定顺序有一定顺序的,的,而集合中的元素而集合中的元素没有顺序没有顺序; (3 3)数列)数列aan n 中的数中的数可以重复可以重复,而集,而集合中的合中的元素不能重复元素不能重复。思考:数列与集合的概念有何区别项项2、数列中的每个数叫、数列中的每个数叫 做这个数列的做这个数列的 3、数列的分类、数列的分类按项数分:按项数分:项数有限的数列叫项数有限的数列叫有穷数列有穷数列项数无限的数列叫项数无限的数列叫无穷数列无穷数列无穷数列无穷数列有穷数列有穷数列有穷数列有穷数列无
5、穷数列无穷数列2 2按大小(单调性)分按大小(单调性)分递减数列:递减数列:从第从第2项起,每一项都小项起,每一项都小于它的前一项的数列于它的前一项的数列递增数列:递增数列:从第从第2项起,每一项都大项起,每一项都大于它的前一项的数列于它的前一项的数列摆动数列:摆动数列:从第从第2项起,有些项大于项起,有些项大于它的前一项,有些项小于它的前一项的它的前一项,有些项小于它的前一项的数列数列常数列:常数列:各项相等的数列各项相等的数列,321,161,81,41,21,11 13 34 41 1 1 1 1 , , 1,1,1,1,1,1,123, 21,18,20,20,22,21,19递减数列
6、递减数列常数列常数列摆动数列摆动数列摆动数列摆动数列 4. 数列的一般形式数列的一般形式可以写成:可以写成:123 naaaa, , , , , na是数列的第是数列的第n项项1 12 23 34 45 522263211 2n,31224 6111111,第第1项项1()nna 12 n64*(N ,)nn1a第第2项项 第第3项项3a2ana第第n项项n,1, -1n,0212n 的的第第n项项 na5、如果数列、如果数列与与序号序号n之间的关系可以之间的关系可以用用一个公式一个公式来表示,那来表示,那么么这个公式这个公式就叫做这个就叫做这个数列的数列的通项公式通项公式12nnanna*(
7、N )n简记为简记为 na其中其中是数是数1a列的第列的第1项或称为项或称为首项首项,2n,2nna目标目标2:掌握数列的表示方法:掌握数列的表示方法或或na n1na 0n)(*Nn 2 2,321,161,81,41,21,11 13 34 41 1 1 1 1 , , 51,32,28,16,16,5,1523, 21,18,20,20,22,21,19与与序号序号n之间的关系可以之间的关系可以用用一个公式一个公式来表示,那来表示,那么么这个公式这个公式就叫做这个就叫做这个数列的数列的通项公式通项公式的的第第n项项 na5、如果数列、如果数列并不是每个数列都能写出通项公式通项公式解:解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 211 数列 基本概念 简单 表示 2013418
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内