纳米二氧化钛太阳能电池的制备及其性能测试实验报告(共8页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《纳米二氧化钛太阳能电池的制备及其性能测试实验报告(共8页).doc》由会员分享,可在线阅读,更多相关《纳米二氧化钛太阳能电池的制备及其性能测试实验报告(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上纳米二氧化钛太阳能电池的制备及其性能测试一、前言1.1实验目的(1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。(2)掌握合成纳米二氧化钛溶胶、组装成电池的方法与原理。(3)学会评价电池性能的方法。1.2实验意义随着世界各国的工业发展,煤、石油等传统能源的使用量急剧增长,寻找干净的新能源成为当务之急。太阳能是唯一种永不枯竭的清洁能源,受到众多研究者的青睐。目前市场上的太阳能电池种类较多,其中硅半导体太阳能电池占了绝对的优势,另外还有无机半导体太阳能电池、p-n结型太阳能电池等。1991年Gratzel等制备了TiO2太阳能电池,把多吡啶钌配合物吸附在
2、多孔膜上,制作成染料敏化纳米晶TiO2太阳能电池,简称DSSC。该太阳能电池的光电转换效率大于10%,且具有永久性、清洁性和灵活性三大优点。只要有太阳光,DSSC就可以一次投资而长期使用。1.3文献综述与总结1991年瑞士学者Grtzel等在Nature上发表文章,提出了一种新型的以染料敏化二氧化钛纳米薄膜为光阳极的光伏电池,现称为Grtzel型电池。这种电池的出现为光电化学电池的发展带来了革命性的创新。目前,此种电池的效率已稳定在10%左右,成本比硅太阳能电池大为降低,且性能稳定。纳米TiO2的粒径和膜的微结构对光电性能的影响很大,纳米TiO2的粒径小,比表面积越大,吸附能力越强,吸附染料分
3、子越多,光生电流也就越强,所以人们采用不同方法使之纳米化、多孔化、薄膜化。只有紧密吸附在半导体表面的单层染料分子才能产生有效的敏化效率。1(1)半导体电极的制备目前,合成纳米TiO2的方法有溶胶凝胶法、水热反应法、溅射法、醇盐水解法、溅射沉积法、等离子喷涂法和丝网印刷法等。应用在DSSC中的TiO2多孔薄膜常用制备方法有胶体涂膜直接低温烧结法、水热法烧结、热液法烧结、微波烧结、紫外-化学气相沉积法等。1溶胶凝胶法是用水解钛酸正丁酷(或无机钛盐,如TiCl4)制得TiO2胶体溶液,后经由浸渍、提拉、丝网印刷、旋涂等方法在导电基底上生长纳米高温锻烧制备出纳米TiO2电极,向溶胶中加入聚合物则有助于
4、TiO2纳米晶粒径的大小的控制。虽然溶胶凝胶法工艺简单,但是有机物成本高、变量多、时间长,干燥后比较容易裂 ,制膜厚度不易于控制。因此导致多孔膜的表面呈现不规则的碎片状,更不利于光阳极吸收染料。2水热法般将溶胶在高压釜中高温高压长时间加热处理,因此水热法被视作溶胶-凝胶法的改进方法,即加入了水热熟化过程通过其控制产物的结晶和晶粒生长,从而对半导体氧化物的尺寸和分布进行控制。大多水热法可得到平均粒径为15-20nm的TiO2颗粒,然后釆用blade或者丝网印刷法将装料刮涂在导电玻璃上。2除TiO2半导体材料被用作染料敏化太阳能电池的光阳极材料,ZnO、Nb2O5、SnO2、Fe2O3、WO3等也
5、被用作光电转换材料。3但是这些材料不管是单晶的还是多晶的,掺杂的还是未掺杂的,他们的光电转化效率还是没有办法与以TiO2作为基底物质的电池相比。(2)染料敏化剂敏化染料分子的性质是电子生成和注入的关键因素。作为光敏剂的染料须具备以下条件:牢固吸附在半导体上;在可见光区具有较高的光吸收;氧化态和激发态有高的稳定性;激发态寿命长;足够负的激发态电势以使电子注入半导体导带;基态电势尽可能正。钌啦唆敏化剂虽然性能优良,但价格较高,而卟琳类和酞菁类染料敏化剂成本较低,在近红外区有较好的吸收,且吸光系数高,结合两者优缺点联合使用,形成光谱特征的互补,使吸收光谱变宽,使得应用前景更为广阔。纯有机染料不含中心
6、金属离子,其优点为消光系数较高,包括香豆素、卟啉、类胡萝卜素、花菁素、半花菁、叶绿素及其衍生物等4。无机染料敏化剂多选用窄带隙半导体材料,并使无机敏化剂与TiO2进行半导体复合,由于具有2种不同能级的导带和价带,复合半导体受光照激发后电子和空穴将迁移至TiO2的导带和复合材料的价带当中,从而实现载流子的有效分离。目前研究较多的无机敏化剂包括CdS、CdSe、WO3等。综上所述,染料的发展方向包括设计和合成耐光照、光谱响应范围大、电子注入效率、热稳定性好的敏化剂。二、实验部分2.1实验原理(1)DSSC结构和工作原理DSSC是由导电玻璃、吸附了染料的纳米晶TiO2薄膜、两极间的电解质(常用I-/
7、I3-)和镀铂导电玻璃对电极组成的夹心状电池。其工作原理同自然界的光合作用一样,通过有效的光吸收和电荷分离把光能转变为电能。由于二氧化钛的禁带宽度较大(3.2eV),可见光不能将其直接激发;在其表面吸附一层染料敏化剂后,染料分子可以吸收太阳光而产生电子跃迁。由于染料的激发态能级高于二氧化钛的导带,电子可以快速注入到二氧化钛导带,进而富集到导电玻璃片上,并通过外电路流向对电极,形成电流。处于氧化态的染料分子则通过电解质溶液中的电子给体,自身恢复为还原态,使染料分子得到再生,被氧化的电子给体扩散至对电极,在电极表面被还原,从而完成一个光电化学反应循环。整个光电化学反应过程如下:敏化剂(S)吸收光能
8、激发,激发态的敏化剂(S*)向TiO2导带注入电子而成为氧化态的敏化剂(S+),反应式为: hvS S* S+ + TiO2(e)氧化态敏化剂被还原型物质(R)还原,反应式为:S+ + R S + O被氧化生成的氧化型物质(O)在阴极上再还原成还原型物质,参加下一个循环的反应,反应式为: O + ne R(2)TiO2纳米多孔膜的合成 为了提高光子捕获效率和量子效率,可将TiO2多孔化、纳米化、薄膜化。本实验主要使用溶胶凝胶法合成TiO2溶液,然后用浸泡提拉法修饰到导电玻璃上。(3)染料敏化剂的特点染料敏化一般涉及三个基本过程:染料吸附到半导体表面;吸附态染料分子吸收光子被激发;激发态染料分子
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 氧化 太阳能电池 制备 及其 性能 测试 实验 报告
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内