人教版数学九上252《用列举法求概率》课件3.ppt
《人教版数学九上252《用列举法求概率》课件3.ppt》由会员分享,可在线阅读,更多相关《人教版数学九上252《用列举法求概率》课件3.ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复复 习习例题例题5 5 中考点击中考点击课堂小结课堂小结思考一思考一 例题例题6 6 思考二思考二用列举法求概率(第三课时)(第三课时)执教、制作执教、制作端方林端方林如东县丰利镇四明初级中学如东县丰利镇四明初级中学复复 习习 口袋中一红三黑共口袋中一红三黑共4个小球,一次从中取出两个小球,个小球,一次从中取出两个小球,求求 “取出的小球都是黑球取出的小球都是黑球”的概率的概率用列举法求概率解:一次从口袋中取出两个小球时,解:一次从口袋中取出两个小球时, 所有可能出现的所有可能出现的结果共结果共6个,即个,即(红,黑(红,黑1)(红,黑)(红,黑2)(红,黑)(红,黑3)(黑(黑1,黑,黑2
2、)(黑)(黑1,黑,黑3)(黑)(黑2,黑,黑3)且它们出现的可能性相等。且它们出现的可能性相等。满足取出的小球都是黑球(记为事件满足取出的小球都是黑球(记为事件A)的结果有)的结果有3个,个,即(黑即(黑1,黑,黑2)(黑)(黑1,黑,黑3)(黑)(黑2,黑,黑3) , 则则 P(A)= =2163例题例题5 5 中考点击中考点击课堂小结课堂小结思考一思考一 例题例题6 6 思考二思考二直接列举直接列举 同时掷两个质地均匀的骰子,计算下列事件的概率:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同)两个骰子的点数相同(2)两个骰子的点数之和是)两个骰子的点数之和是9(3
3、)至少有一个骰子的点数为)至少有一个骰子的点数为2中考点击中考点击课堂小结课堂小结思考一思考一 例题例题6 6 思考二思考二例题例题5 5 复复 习习用列举法求概率同时掷两个质地均匀的骰子,计算下列事件的概率:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同)两个骰子的点数相同(2)两个骰子的点数之和是)两个骰子的点数之和是9(3)至少有一个骰子的点数为)至少有一个骰子的点数为2123456123456解:由列表得,同时掷两个骰子,解:由列表得,同时掷两个骰子,可能出现的结果有可能出现的结果有36个,它们出现个,它们出现的可能性相等。的可能性相等。(1)满足两个骰子的点数
4、相同(记)满足两个骰子的点数相同(记为事件为事件A)的结果有)的结果有6个,则个,则P(A)= =(2)满足两个骰子的点数之和是)满足两个骰子的点数之和是9(记为事件(记为事件B)的结果有)的结果有4个,则个,则P(B)= =(3)满足至少有一个骰子的点数为)满足至少有一个骰子的点数为2(记为事件(记为事件C)的结果有)的结果有11个,则个,则P(C)= 第一个第二个36661364913611例题例题5 5 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)(1,3) (2,3) (3,3) (4,3)
5、 (5,3) (6,3)(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)中考点击中考点击课堂小结课堂小结思考一思考一 例题例题6 6 思考二思考二复复 习习用列举法求概率思考一思考一 2、如果把上一个例题中的、如果把上一个例题中的“同时掷两个骰子同时掷两个骰子”改为改为“把把一个骰子掷两次一个骰子掷两次”,所有可能,所有可能出现的结果有变化吗?出现的结果有变化吗?1234561(1,1) (2,1) (3,1) (4,1) (5,1)
6、 (6,1)2(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)3(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)4(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)5(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)6(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)第一次第二次 当一次试验涉及当一次试验涉及两个因素两个因素时,且可能出现的时,且可能出现的结果较结果较多多时,为不重复不遗漏地列出所有可能的结果,通常用时,为不重复不遗漏地列出所有可能的结果,通常用列表法列表法。 1、什么时候用
7、、什么时候用“列表法列表法”方便?方便?复复 习习例题例题5 5 例题例题6 6 思考二思考二课堂小结课堂小结中考点击中考点击用列举法求概率 改动后所有可能出现的结改动后所有可能出现的结果没有变化果没有变化 在在6张卡片上分别写有张卡片上分别写有16的整数,随机地抽取一张后放的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够回,再随机地抽取一张,那么第一次取出的数字能够整除整除第二第二次取出的数字的概率是多少?次取出的数字的概率是多少? 1234561(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)2(1,2) (2,2) (3,2) (4,2) (
8、5,2) (6,2)3(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)4(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)5(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)6(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)第一张第二张解:由列表得,两次抽取卡片后,解:由列表得,两次抽取卡片后,可能出现的结果有可能出现的结果有36个,它们出现个,它们出现的可能性相等的可能性相等. 满足第一次取出的数字能够整满足第一次取出的数字能够整除第二次取出的数字(记为事件除第二次取出的数字(记为事件A)的结果有的结果有14
9、个,则个,则P(A)= =3614187复复 习习例题例题5 5 思考一思考一 例题例题6 6 思考二思考二课堂小结课堂小结中考点击中考点击用列举法求概率例题例题6 6 甲口袋中装有甲口袋中装有2个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母A和和B; 乙口袋中装有乙口袋中装有3个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母C、D和和E;丙口袋中装有丙口袋中装有2个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母H和和I。从从3个口袋中各随机地取出个口袋中各随机地取出1个小球。个小球。(1)取出的)取出的3个小球上恰好有个小球上恰好有1个、个、2个和个和3
10、个元音字母的概率个元音字母的概率分别是多少?分别是多少?(2)取出的)取出的3个小球上全是辅音字母的概率是多少?个小球上全是辅音字母的概率是多少? 复复 习习例题例题5 5 思考一思考一 思考二思考二课堂小结课堂小结中考点击中考点击用列举法求概率本题中元音字母本题中元音字母: A E I 辅音字母辅音字母: B C D H例题例题6 6 甲口袋中装有甲口袋中装有2个相同的小球,它们分别写有字母个相同的小球,它们分别写有字母A和和B; 乙口袋中装有乙口袋中装有3个相同的小球,它们分别个相同的小球,它们分别写有字母写有字母C、D和和E;丙口袋中装有;丙口袋中装有2个相同的小球,它们分别写有字母个相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用列举法求概率 人教版 数学 252 列举 概率 课件
限制150内