立体几何复习课.ppt
《立体几何复习课.ppt》由会员分享,可在线阅读,更多相关《立体几何复习课.ppt(92页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何复习课件立体几何复习课件平行问题垂直问题垂直问题角度问题角度问题距离问题距离问题体积面积问题体积面积问题生活问题和翻折问题生活问题和翻折问题综合问题综合问题平行问题返回直线和平面的位置关系直线和平面的位置关系直线和平面的平行关系直线和平面的平行关系平面和平面的平行关系平面和平面的平行关系返回直线在平面内直线在平面内直线和平面相交直线和平面相交直线和平面平行直线和平面平行线面位置关系线面位置关系有无数个公共点有无数个公共点有且仅有一个公有且仅有一个公共点共点没有公共点没有公共点返回平行于同一平面的二直线的位平行于同一平面的二直线的位置关系是置关系是 ( ( )(A A) 一定平行一定平行
2、(B B) 平行或相交平行或相交(C C) 相交相交(D D) 平行,相交,异面平行,相交,异面D返回(1 1)点)点A A是平面是平面 外的一点,过外的一点,过A A和和平面平面 平行的直线有平行的直线有 条。条。A无数无数返回(2 2)点)点A A是直线是直线l l 外的一点,过外的一点,过A A和直线和直线l l 平行的平面有平行的平面有 个。个。A无数无数返回(3 3)过两条平行线中的一条和另)过两条平行线中的一条和另一条平行的平面有一条平行的平面有 个。个。无数无数返回(4 4)过两条异面直线中的一条和另)过两条异面直线中的一条和另一条平行的平面有一条平行的平面有 个。个。且仅有一且
3、仅有一返回(5 5)如果)如果l l1 1 / / l l2 2 , , l l1 1 平行于平行于平面平面 , ,则则l l2 2 平面平面 l1 l2l2 或或 /返回(6 6)如果两直线)如果两直线a a,b b相交相交,a,a平行于平行于平面平面 ,则,则b b与平面与平面 的位置关系的位置关系是是 。a bb相交或平行相交或平行返回(1)(1)定义定义直线与平面没有公共点直线与平面没有公共点(2)(2)定理定理如果平面外一条直线和如果平面外一条直线和这个平面内的一条直线平行,那么这这个平面内的一条直线平行,那么这条直线和这个平面平行。条直线和这个平面平行。返回如图如图, ,两个全等的
4、正方形两个全等的正方形ABCDABCD和和ABEFABEF所所在平面交于在平面交于AB,M.NAB,M.N分别是对角线上的点,分别是对角线上的点,AM=FNAM=FN。求证。求证:MN/:MN/面面BCEBCE。ABCDEFMNGHMN / GH MN /面面BCE线线平行线线平行线面平行线面平行返回GABCDEFMNHAFN BNH AN/NH=FN/BN AN/NH=AM/MC MN/CH MN /面面BCE如图如图, ,两个全等的正方形两个全等的正方形ABCDABCD和和ABEFABEF所所在平面交于在平面交于AB, M.NAB, M.N分别是对角线上的分别是对角线上的点,点,AM=FN
5、AM=FN,求证,求证:MN/:MN/面面BCEBCE。返回ABDCA1B1D1C1 在正方体在正方体ACAC1 1中,中,E E为为DDDD1 1的中的中点,求证:点,求证:DBDB1 1/面面A A1 1C C1 1E EEFDB1 / EF DB1 /面面A1C1E线线平行线线平行线面平行线面平行返回在正方体在正方体ACAC1 1中,中,O O为平面为平面ADDADD1 1A A1 1的的中心,求证:中心,求证:CO / CO / 面面A A1 1C C1 1B BABDCA1B1D1C1B1OF返回线面平行的性质线面平行的性质线面平行的性质线面平行的性质(1)1)如果一条直线与一个平面
6、平行,如果一条直线与一个平面平行,则这条直线与这个平面则这条直线与这个平面无公共点无公共点(2)(2)如果一条直线与一个平面平行,如果一条直线与一个平面平行,则这条直线与这个平面内的直线则这条直线与这个平面内的直线成成异面直线或平行直线异面直线或平行直线(3)(3)如果一条直线与一个平面平行,如果一条直线与一个平面平行,经过这条直线的平面和这个平面相经过这条直线的平面和这个平面相交,则这条交,则这条直线与交线平行直线与交线平行。返回如果一条直线与一个平面平行,如果一条直线与一个平面平行,经过这条直线的平面和这个平面经过这条直线的平面和这个平面相交,则这条相交,则这条直线与交线平行直线与交线平行
7、如果一条直线与一个平面平行,如果一条直线与一个平面平行,经过这条直线的平面和这个平面经过这条直线的平面和这个平面相交,则这条相交,则这条直线与交线平行直线与交线平行已知:已知:a/ ,a, =b 求证:求证:a/b ab =bb a / a b= a/b返回如果平面外的两条平行线中的一条如果平面外的两条平行线中的一条与这个平面平行,则另一条直线与与这个平面平行,则另一条直线与这个平面也平行这个平面也平行abc返回如果一条直线和两个相交平面都平如果一条直线和两个相交平面都平行,则这条直线与它们的交线平行行,则这条直线与它们的交线平行abc l已知:已知:a / a / , a/ a/ , = =
8、l l求证:求证:a / a / l l返回abABOMNPD如图,如图,a,ba,b是异面直线,是异面直线,O O为为ABAB的中点,的中点,过点过点O O作平面作平面 与两异面直线与两异面直线a,ba,b都平行都平行MNMN交平面于点交平面于点P P,求证:,求证:MP=PNMP=PN 返回一、两个平面平行的判定方法一、两个平面平行的判定方法1 1、两个平面没有公共点、两个平面没有公共点2 2、一个平面内有两条相交、一个平面内有两条相交直线都平行于另一个平面直线都平行于另一个平面3 3、都垂直于同一条直线、都垂直于同一条直线的两个平面的两个平面两个平面平行两个平面平行返回二、两个平面平行的
9、性质二、两个平面平行的性质4 4、一直线垂直于两个平行平面中、一直线垂直于两个平行平面中的一个,则它也垂直于另一个平面的一个,则它也垂直于另一个平面2 2、其中一个平面内的直线平行、其中一个平面内的直线平行于另一个平面于另一个平面3 3、两个平行平面同时和第三个平、两个平行平面同时和第三个平面相交,它们的交线平行面相交,它们的交线平行两个平面平行两个平面平行5 5、夹在两个平行平面间的平行线、夹在两个平行平面间的平行线段相等段相等1 1、两个平面没有公共点、两个平面没有公共点返回判断下列命题是否正确?判断下列命题是否正确?1 1、平行于同一直线的两平面平行、平行于同一直线的两平面平行2 2、垂
10、直于同一直线的两平面平行、垂直于同一直线的两平面平行3 3、与同一直线成等角的两平面平行、与同一直线成等角的两平面平行返回4.4.垂直于同一平面的两平面平行垂直于同一平面的两平面平行5.5.若若,则平面则平面内任一直线内任一直线a a 6.6.若若n n ,m ,m ,n,m,n,m则则nm返回2. 如图如图,设设AB、CD为夹在两个平行平面为夹在两个平行平面 、 之间之间 的线段,且直线的线段,且直线AB、CD为异面直线,为异面直线,M、P 分别分别为为AB、CD 的中点,的中点,求证:求证: 直线直线MP / 平面平面 .ADCBPMNE返回例例: :如图如图, ,在正方体在正方体ABCD
11、-AABCD-A1 1B B1 1C C1 1D D1 1 中,求中,求证:面证:面ABAB1 1D D1 1面面BDCBDC1 1证明:证明:BDBBDB1 1D D1 1BD BD 面面BDCBDC1 1B B1 1D D1 1 面面BDCBDC1 1B B1 1D D1 1面面BDCBDC1 1同理:同理:ABAB1 1面面BDCBDC1 1B B1 1D D1 1ABAB1 1=B=B1 1面面ABAB1 1D D1 1面面BDCBDC1 1线线线线线线面面面面面面ABCDA1B1C1D1返回证法证法2 2:ACBDACBDA A1 1AA面面ACACA A1 1C C在面在面ACAC
12、上的上的射影为射影为ACACA A1 1CBDCBDBDBCBDBC1 1=B=BA A1 1CBCCBC1 1同理同理: :A A1 1CC面面BDCBDC1 1同理同理: :A A1 1CC面面ABAB1 1D D1 1面面ABAB1 1D D1 1面面BDCBDC1 1ABCDA1B1C1D1返回变形变形1:1:如图,在正方如图,在正方体体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,中,E,F,GE,F,G分别为分别为A A1 1D D1 1,A,A1 1B B1 1,A,A1 1A A的中点的中点, ,求证:面求证:面EFGEFG面面BDCBDC1 1变形变形
13、2:2:若若O O为为BDBD上的点上的点求证:求证:OCOC1 1 面面EFGEFGO面面面面 由上知面由上知面EFGEFG面面BDCBDC1 1OCOC1 1 面面BDCBDC1 1ABCDA1B1C1D1EFG线线面面OCOC1 1 面面EFGEFG证明:证明:返回变形变形3:3:如图如图, ,在正在正方体方体ABCD-ABCD-A A1 1B B1 1C C1 1D D1 1 中,中,E,F,M,NE,F,M,N分别为分别为A A1 1B B1 1,A,A1 1D D1 1, B, B1 1C C1 1, , C C1 1D D1 1 的中点的中点ABCDA1B1C1D1EFNM求证:
14、面求证:面AEFAEF面面BDMNBDMN返回小结:小结:线线平行平行线线 线线平行平行 面面 面面平行平行 面面线面平行判定线面平行判定线面平行性质线面平行性质面面平行判定面面平行判定面面平行性质面面平行性质三种平行关系的转化三种平行关系的转化返回垂直问题线面垂直的判定方法线面垂直的判定方法(1)(1)定义定义如果一条直线和一个平面内的如果一条直线和一个平面内的任任意一条意一条直线都垂直,则直线与平面垂直。直线都垂直,则直线与平面垂直。(2)(2)判定定理判定定理1 1如果两条如果两条平行线平行线中的一条垂中的一条垂直于一个平面,则另一条也垂直于这个平面。直于一个平面,则另一条也垂直于这个平
15、面。(3)(3)判定定理判定定理2 2如果一条直线和一个平面内如果一条直线和一个平面内的的两条相交直线两条相交直线都垂直,则直线与平面垂直。都垂直,则直线与平面垂直。返回线面垂直的性质线面垂直的性质(1)(1)性质性质如果一条直线和一个平面垂直则如果一条直线和一个平面垂直则这条直线垂直于平面内的这条直线垂直于平面内的任意一条任意一条直线直线(2)(2)性质定理性质定理如果两条直线同垂直于一个如果两条直线同垂直于一个平面,则这两条直线平面,则这两条直线平行平行。返回(3)(3)性质性质 过空间一点作直线的垂面过空间一点作直线的垂面有且只有一个有且只有一个, ,作平面的垂线作平面的垂线有且只有一条
16、有且只有一条. .填空填空(1)l , m l_m(2) n, m , m与与n_, l m, l n, l (3)l , m , l_m(4)l /m , l , m_ 相交相交 / 返回PABC如图,如图,ABAB是圆是圆O O的直径,的直径,C C是异于是异于A A,B B的圆周上的任意一点,的圆周上的任意一点,PAPA垂直于圆垂直于圆O O所在的平面所在的平面(1)BC面面PAC返回PABC H2)2)若若AHPC,AHPC,则则AHAH面面PBCPBC如图,如图,ABAB是圆是圆O O的直径,的直径,C C是异于是异于A A,B B的圆周上的任意一点,的圆周上的任意一点,PAPA垂直
17、于圆垂直于圆O O所在的平面所在的平面返回PABC H3)3)若若AHPC,AEAHPC,AEPB,则则PBHEPBHE如图,如图,ABAB是圆是圆O O的直径,的直径,C C是异于是异于A A,B B的圆周上的任意一点,的圆周上的任意一点,PAPA垂直于圆垂直于圆O O所在的平面所在的平面返回EABDCA1B1D1C1O在正方体在正方体ACAC1 1中中,O,O为下底面的中心为下底面的中心, ,求证:求证:ACAC面面D D1 1B B1 1BDBD返回ABDCA1B1D1C1OH在正方体在正方体ACAC1 1中,中,O O为下底面的中为下底面的中心,心,B B1 1H DH D1 1O,O
18、,求证:求证:B B1 1HH面面D D1 1ACAC返回ABDCA1B1D1C1OH在正方体在正方体ACAC1 1中,中,O O为下底面的中为下底面的中心,心,H H为为D D1 1D D的中点的中点, ,求证:求证:B B1 1OO面面HACHAC返回OHABDCA1B1D1C1E如果两个平面所成的二面角是如果两个平面所成的二面角是直二面角,则这两个平面垂直直二面角,则这两个平面垂直如果两个平面所成的二面角是如果两个平面所成的二面角是直二面角,则这两个平面垂直直二面角,则这两个平面垂直返回如果一个平面经过另一个平面的一如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直条垂线,则这两
19、个平面互相垂直ABEDC线面垂直线面垂直线面垂直线面垂直面面垂直面面垂直面面垂直面面垂直返回如图,如图,C C为以为以ABAB为直径的圆周上一点,为直径的圆周上一点, PAPA面面ABCABC,找出图中互相垂直的平面。,找出图中互相垂直的平面。PABCPA面面ABC面面PAC面面ABC面面PAB面面ABCBC面面PAC面面PBC面面PAC返回如果两个平面垂直,则在一个平面内垂直如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面于它们的交线的直线垂直于另一个平面ABDCE线面垂直线面垂直线面垂直线面垂直面面垂直面面垂直面面垂直面面垂直返回求证:如果一个平面与另一个平面的求证:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 复习
限制150内