222(4)椭圆的简单几何性质(3).ppt
《222(4)椭圆的简单几何性质(3).ppt》由会员分享,可在线阅读,更多相关《222(4)椭圆的简单几何性质(3).ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、直线与椭圆的位置关系直线与椭圆的位置关系drd00直线与椭圆相交直线与椭圆相交有两个公共点;有两个公共点; (2)=0 直线与椭圆相切直线与椭圆相切有且只有一个公共点;有且只有一个公共点; (3)0- (1)所以,方程()有两个根,所以,方程()有两个根,则原方程组有两组解。则原方程组有两组解。题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系练习练习1.K为何值时为何值时,直线直线y=kx+2和曲线和曲线2x2+3y2=6有有两个公共点两个公共点?有一个公共点有一个公共点?没有公共点没有公共点?练习练习2.无论无论k为何值为何值,直线直线y=kx+2和曲线和曲线交点情况满足交点情况满足
2、( )A.没有公共点没有公共点 B.一个公共点一个公共点C.两个公共点两个公共点 D.有公共点有公共点22194xy D题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系6k366kk-3366-k33当 =时有一个交点当或时有两个交点当时没有交点lmm题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系2214 -5400.259 xylxyl例3:已知椭圆,直线 :椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少? oxyml解:设直线 平行于 ,224501259xykxy由方程组22258-2250yxkxk消去 ,得题型一:直线与椭圆的位置关系题型一:直线与椭圆的位
3、置关系22064-4 25-2250kk 由,得()450lxyk则 可写成:12k25k25解得=,=-25.k 由图可知 oxy45250mxy直线 为:22402515414145mld直线 与椭圆的交点到直线 的距离最近。且思考:最大的距离是多少?题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系2214 -5400.259 xylxyl例3:已知椭圆,直线 :椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少?max22402565414145d设直线与椭圆交于设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线两点,直线P1P2的斜率为的斜率为k弦长公式:弦
4、长公式:221|1|1|ABABABkxxyyk知识点知识点2:弦长公式:弦长公式可推广到任意二次曲线例例1:已知斜率为:已知斜率为1的直线的直线L过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A,B两点,求弦两点,求弦AB之长之长题型二:弦长公式题型二:弦长公式222:4,1,3.abc解 由椭圆方程知( 3,0).F右焦点:3.lyx直线 方程为22314yxxy258 380yxx消 得:1122( ,), (,)A x yB xy设12128 38,55xxxx22212121211()4ABkxxkxxxx85例例 2 2: :已知点已知点12FF、分别是椭圆分别是椭圆22121
5、xy的左、右的左、右 题型二:弦长公式题型二:弦长公式例例 2 2: :已知点已知点12FF、分别是椭圆分别是椭圆22121xy的左、右的左、右 例例3 :已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.解:解:韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点坐标公式来构造题型三:中点弦问题题型三:中点弦问题例例 3 已知椭圆已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.点差法:
6、利用端点在曲线上,坐标满足方程,作差构造点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率出中点坐标和斜率点点作差作差题型三:中点弦问题题型三:中点弦问题知识点知识点3:中点弦问题:中点弦问题点差法:点差法:利用端点在曲线上,坐标满足方程,作利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率差构造出中点坐标和斜率112200( ,), (,),(,)A x yB xyABM xy设中点,0120122,2xxxyyy则有:1212AByykxx又2211221xyab2222221xyab两式相减得:2222221211()()0bxxayy1122( ,), (,)A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 222 椭圆 简单 几何 性质
限制150内