二次函数图象及性质(复习).ppt
《二次函数图象及性质(复习).ppt》由会员分享,可在线阅读,更多相关《二次函数图象及性质(复习).ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、南阳市油田第一中学南阳市油田第一中学 张书云张书云退出退出一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系一、定义一、定义二、顶点与对称轴二、顶点与对称轴四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。三、解析式的求法三、解析式的求法一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、 的的正
2、负关系正负关系y=ax2+bx+cy=a(x+ )2+ b2a4ac-b24a 对称轴对称轴: x= b2a顶点坐标顶点坐标:(:( , ) b2a4ac-b24a一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、 的的正负关系正负关系 解析式解析式使用范使用范围围一般一般式式已知任意三个点顶点顶点式式已知顶点(h,k)及另一点交点交点式式已知与x轴的两个交点及另一个点y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)(x-x2) (1)a确定抛物线的开口方向:确定抛物线的开口方向:a0a0c=0c0ab=0ab0
3、=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00 x=-b2axy0五如何求抛物线与坐标轴五如何求抛物线与坐标轴的交点坐标?的交点坐标?y=ax2+bx+ccC, 0若求与轴的交点坐标则令若求与轴的交点坐标则令得得如图点的坐标为如图点的坐标为c , 0若求与轴的交点坐
4、标则令若求与轴的交点坐标则令则得一元二次方程则得一元二次方程02cbxax轴的交点的个数。与物线的根的多少就决定了抛那么方程xcbxax02xy0cC, 0(x1,0)(x2,0).24.004) 1 (22, 122轴有两个交点此时抛物线与有两个不相等实数根时,一元二次方程当xaacbbxcbxaxacb)(0 ,(),0 ,(2121xxxBxA如图xy0.2.004)2(2122轴有一个交点此时抛物线与有两个相等的实数根时,一元二次方程当xabxxcbxaxacb)0 ,2(abM )0 ,2(abM 如图.004) 3(22轴没有交点此时抛物线与没有实数根时,一元二次方程当xcbxax
5、acbxy0例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。
6、(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(1)a= 0 抛物线的开口向上抛物线的开口向上 y= (x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212例例1: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C, A,B的坐标。的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 图象 性质 复习
限制150内