《二次函数》复习参考课件2.ppt
《《二次函数》复习参考课件2.ppt》由会员分享,可在线阅读,更多相关《《二次函数》复习参考课件2.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。一、定义一、定义二、图象特点和性质二、图象特点和性质三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、 的正负关的正负关系系1.特殊的二次函数特殊的二次函数 y=ax2 (a0)0)的图象特点和函数性质的图象特点和函数性质一、定义一、定义二、图象特点和性质二、图象特点和性质四、图象位置与四、图象位置与a、b、c、 的正负的正负关系关系三、解析式的求法三、解析式的求法(1)是一条抛物线;是一条抛物线;(2)对称轴是对称轴是y轴;轴;(3)顶点在原
2、点;顶点在原点;(4)开口方向开口方向:a0时时,开口向上;开口向上;a0时,时,y轴左侧,函轴左侧,函数值数值y随随x的增大而减小的增大而减小 ; y轴右侧,函数值轴右侧,函数值y随随x的增大而的增大而增大增大 。 a0时,时,ymin=0 a0时时,开口向上;开口向上; a0时,对称轴左侧时,对称轴左侧(x- ),函数值,函数值y随随x的增大而的增大而增大增大 。 a0时,对称轴左侧时,对称轴左侧(x- ),函数值,函数值y随随x的增大而的增大而减小减小 。 (2) a0时,时,ymin= a0a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0
3、=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00该抛物线与x轴一定有两个交点(2)解:抛物线与x轴相交时 x2-2x-8=0解方程得:x1=4, x2=-2AB=4-(-2)=6而P点坐标是(1,-9)SABC=27xyABPxyOAxyOBxyOCxyOD 例例3:在同一直角坐标系中,一次函数在同一直角坐标系中,一次函数y=ax+c和二次函数和二次函数y=ax2+c
4、的图象大致为的图象大致为(二二)根据函数性质判定函数图象根据函数性质判定函数图象之间的位置关系之间的位置关系答案答案: B 例例4、已知二次函数、已知二次函数y=ax2+bx+c的最的最大值是大值是2,图象顶点在直线,图象顶点在直线y=x+1上,并上,并且图象经过点(且图象经过点(3,-6)。求)。求a、b、c。解:解:二次函数的最大值是二次函数的最大值是2抛物线的顶点纵坐标为抛物线的顶点纵坐标为2又又抛物线的顶点在直线抛物线的顶点在直线y=x+1上上当当y=2时,时,x=1 顶点坐标为(顶点坐标为( 1 , 2)设二次函数的解析式为设二次函数的解析式为y=a(x-1)2+2又又图象经过点(图
5、象经过点(3,-6)-6=a (3-1)2+2 a=-2二次函数的解析式为二次函数的解析式为y=-2(x-1)2+2即:即: y=-2x2+4x(三三)根据函数性质求函数解析式根据函数性质求函数解析式例例5: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C, A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232(四四)二次函数综合应用二次函数综合应用例例5: 已知二次函数已
6、知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C, A,B的坐标。的坐标。(3)画出函数图象的示意图。)画出函数图象的示意图。(4)求)求MAB的周长及面积。的周长及面积。(5)x为何值时,为何值时,y随的增大而减小,随的增大而减小,x为何值时,为何值时,y有最大有最大 (小)值,这个最大(小)值是多少?(小)值,这个最大(小)值是多少?(6)x为何值时,为何值时,y0?1232解解:(1)a= 0 抛物线的开口向上抛物线的开口向上 y=
7、(x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212例例5: 已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C, A,B的坐标。的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解: (2)由由x=0,得,得y= - -抛物线与抛物线与y轴的交点轴的交点C(0,- -) 由由y=0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数 二次 函数 复习 参考 课件
限制150内