2014中考数学复习方案第七单元几何变换、投影与视图数与式课件新人教版.ppt
《2014中考数学复习方案第七单元几何变换、投影与视图数与式课件新人教版.ppt》由会员分享,可在线阅读,更多相关《2014中考数学复习方案第七单元几何变换、投影与视图数与式课件新人教版.ppt(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第32讲讲轴对称与中心对轴对称与中心对 第第32讲讲 考点聚焦考点聚焦考点聚焦考点聚焦考点考点1 1 轴对称与轴对称图形轴对称与轴对称图形 轴对称轴对称轴对称图形轴对称图形定义定义把一个图形沿着某一条把一个图形沿着某一条直线折叠,如果它能够直线折叠,如果它能够与另一个图形与另一个图形_,那,那么就说这两个图形关于么就说这两个图形关于这条直线对称,这条直这条直线对称,这条直线叫做对称轴折叠后线叫做对称轴折叠后重合的点是对应点,叫重合的点是对应点,叫对称点对称点如果一个图形沿某一直线对如果一个图形沿某一直线对折后,直线两旁的部分能够折后,直线两旁的部分能够互相重合,这个图形叫做互相重合,这个图形
2、叫做_,这条直线叫,这条直线叫做它的对称轴这时我们也做它的对称轴这时我们也说这个图形关于这条直线说这个图形关于这条直线(成成轴轴)对称对称区别区别轴对称是指轴对称是指_全全等图形之间的相互位置等图形之间的相互位置关系关系轴对称图形是指具有特殊形轴对称图形是指具有特殊形状的状的_图形图形重合重合 轴对称图形轴对称图形 两个两个 一个一个 第第32讲讲 考点聚焦考点聚焦联系联系如果把轴对称的两个图形看成一个整如果把轴对称的两个图形看成一个整体体( (一个图形一个图形) ),那么这个图形是轴对称,那么这个图形是轴对称图形;如果把一个轴对称图形中对称图形;如果把一个轴对称图形中对称的部分看成是两个图形
3、,那么它们成轴的部分看成是两个图形,那么它们成轴对称对称轴对称轴对称的性质的性质(1)(1)对称点的连线被对称轴对称点的连线被对称轴_(2)(2)对应线段对应线段_(3)(3)对应线段或延长线的交点在对应线段或延长线的交点在_上上(4)(4)成轴对称的两个图形成轴对称的两个图形_垂直平分垂直平分 相等相等 对称轴对称轴 全等全等 第第32讲讲 考点聚焦考点聚焦考点考点2 2 中心对称与中心对称图形中心对称与中心对称图形 中心对称中心对称中心对称图形中心对称图形定义定义把一个图形绕着某一点把一个图形绕着某一点旋转旋转_后,如果后,如果它能与另一个图形它能与另一个图形_,那么就说这,那么就说这两个
4、图形关于这个点成两个图形关于这个点成中心对称,该点叫做中心对称,该点叫做_把一个图形绕着某一点旋把一个图形绕着某一点旋转转_,如果旋转后,如果旋转后的图形能够与原来的图形的图形能够与原来的图形重合,那么我们把这个图重合,那么我们把这个图形叫中心对称图形,这个形叫中心对称图形,这个点叫做点叫做_区别区别中心对称是指两个全等中心对称是指两个全等图形之间的相互位置关图形之间的相互位置关系系中心对称图形是指具有特中心对称图形是指具有特殊形状的一个图形殊形状的一个图形180 重合重合 对称中心对称中心 180 对称中心对称中心 第第32讲讲 考点聚焦考点聚焦联系联系如果把中心对称的两个图形看成一个整体如
5、果把中心对称的两个图形看成一个整体( (一个图形一个图形) ),那么这个图形是中心对称图形;,那么这个图形是中心对称图形;如果把一个中心对称图形中对称的部分看如果把一个中心对称图形中对称的部分看成是两个图形,那么它们成中心对称成是两个图形,那么它们成中心对称中心对称中心对称的性质的性质(1)(1)中心对称的两个图形,对称点所连线段都中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心经过对称中心,而且被对称中心_(2)(2)成中心对称的两个图形成中心对称的两个图形_平分平分 全等全等 第第32讲讲 归类示例归类示例归类示例归类示例 类型之一轴对称图形与中心对称图形的概念类型之一轴对
6、称图形与中心对称图形的概念 命题角度:命题角度:1. 轴对称的定义,轴对称图形的判断;轴对称的定义,轴对称图形的判断;2. 中心对称的定义,中心对称图形的判断中心对称的定义,中心对称图形的判断B例例1 2012丽水丽水 在方格纸中,选择标有序号在方格纸中,选择标有序号中中的一个小正方形涂黑,与图中阴影部分构成中心对称图的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是形,该小正方形的序号是()A BC D图图321第第32讲讲 归类示例归类示例 解析解析 如图,把标有序号的白色小正方形涂黑如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图,就可以使
7、图中的黑色部分构成一个中心对称图形形第第32讲讲 归类示例归类示例(1)(1)把所要判断的图形沿一条直线折叠后,直线两把所要判断的图形沿一条直线折叠后,直线两旁的部分能够互相重合的图形是轴对称图形;旁的部分能够互相重合的图形是轴对称图形;(2)(2)把所要判断的图形绕着某个点旋转把所要判断的图形绕着某个点旋转180180后能后能与自身重合的图形是中心对称图形与自身重合的图形是中心对称图形 类型之二类型之二图形的折叠与轴对称图形的折叠与轴对称 命题角度:命题角度:图形的折叠与轴对称的关系图形的折叠与轴对称的关系 第第32讲讲 归类示例归类示例图322 C 第第32讲讲 归类示例归类示例 图形折叠
8、的本质是轴对称,折叠前后的两个部分全图形折叠的本质是轴对称,折叠前后的两个部分全等等第第32讲讲 归类示例归类示例 类型之三类型之三 轴对称与中心对称有关的作图问题轴对称与中心对称有关的作图问题 例例3 2012广州广州 如图如图323,P的圆心的圆心P(3,2),半径为半径为3,直线,直线MN过点过点M(5,0)且平行于且平行于y轴,点轴,点N在在点点M的上方的上方(1)在图中作出在图中作出P关于关于y轴对称的轴对称的P,根据作图直接,根据作图直接写出写出P与直线与直线MN的位置关系;的位置关系;(2)若点若点N在在(1)中的中的P上,求上,求PN的长的长第第32讲讲 归类示例归类示例命题角
9、度:命题角度:1. 利用轴对称的性质作图;利用轴对称的性质作图;2. 利用中心对称的性质作图;利用中心对称的性质作图;3. 利用轴对称或中心对称的性质设计图案利用轴对称或中心对称的性质设计图案 第第32讲讲 归类示例归类示例图图323第第32讲讲 归类示例归类示例解析解析 (1)根据关于根据关于y轴对称的点的横坐标互轴对称的点的横坐标互为相反数,纵坐标相等找出点为相反数,纵坐标相等找出点P的位置,然后的位置,然后以以3为半径画圆即可;再根据直线与圆的位置为半径画圆即可;再根据直线与圆的位置关系解答;关系解答;(2)设直线设直线PP与与MN相交于点相交于点Q,在,在RtQPN中,利用勾股定理求出
10、中,利用勾股定理求出QN的长度,在的长度,在RtQPN中,利用勾股定理列式计算即可求出中,利用勾股定理列式计算即可求出PN的长度的长度 第第32讲讲 归类示例归类示例此类作图问题的关键是根据轴对称与中心对称坐标特征此类作图问题的关键是根据轴对称与中心对称坐标特征求出对称点的坐标求出对称点的坐标第第32讲讲 归类示例归类示例第第32讲讲 回归教材回归教材“输气管线路最短输气管线路最短”问题的拓展创新问题的拓展创新 回归教材回归教材教材母题教材母题人教版八上人教版八上P42探究探究如图如图32324 4,要在燃气管道,要在燃气管道l l上修建一个泵站,分上修建一个泵站,分别向别向A A、B B两镇
11、供气,泵站修在管道的什么地方,可两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?你可以在使所用的输气管线最短?你可以在l l上找几个点试上找几个点试一试,能发现什么规律?一试,能发现什么规律?图图32324 4第第32讲讲 回归教材回归教材 解析解析 把管道把管道l近似地看成一条直线,问题就是要在近似地看成一条直线,问题就是要在l上找一点上找一点C,使,使AC与与CB的和最小的和最小解:解:略略点析点析 平面图形上求最短距离有两种情况:平面图形上求最短距离有两种情况:(1)若若A、B在在l的同侧,则先作对称点,再连接;的同侧,则先作对称点,再连接;(2)若若A、B在在l的异侧,则直接
12、连接的异侧,则直接连接第第32讲讲 回归教材回归教材中考变式2010淮安淮安 (1)观察发现观察发现如图如图325,若点,若点A,B在直线在直线l同侧,在直线同侧,在直线l上找一上找一点点P,使,使APBP的值最小的值最小作法如下:作点作法如下:作点B关于直线关于直线l的对称点的对称点B,连接,连接AB,与直线与直线l的交点就是所求的点的交点就是所求的点P;再如图再如图326,在等边三角形,在等边三角形ABC中,中,AB2,点,点E是是AB的中点,的中点,AD是高,在是高,在AD上找一点上找一点P,使,使BPPE的的值最小值最小作法如下:作点作法如下:作点B关于关于AD的对称点,恰好与点的对称
13、点,恰好与点C重合重合,连接,连接CE交交AD于一点,则这点就是所求的点于一点,则这点就是所求的点P,故,故BPPE的最小值为的最小值为_ 第第32讲讲 回归教材回归教材(2)实践运用实践运用如题图如题图327,已知,已知 O的直径的直径CD为为4,AD的度数为的度数为60,点,点B是是AD的中点,在直径的中点,在直径CD上找一点上找一点P,使,使BPAP的值最小,并求的值最小,并求BPAP的最小值;的最小值;(1)观察发现观察发现图图325图图326图图327图图328 第第32讲讲 回归教材回归教材 (3)拓展延伸拓展延伸 如图如图328,在四边形,在四边形ABCD的对角线的对角线AC上找
14、一点上找一点P,使,使APBAPD.保留保留作图痕迹,不必写出作法作图痕迹,不必写出作法第第32讲讲 回归教材回归教材第第32讲讲 回归教材回归教材(3)如图,找如图,找B关于关于AC的对称点的对称点E,连接,连接DE并延长交并延长交AC于点于点P即可即可第第33讲讲平移与旋转平移与旋转 第第33讲讲 考点聚焦考点聚焦考点聚焦考点聚焦考点考点1 1 平移平移 定义定义在平面内,将一个图形沿某个在平面内,将一个图形沿某个_移动一移动一定的定的_,这样的图形移动称为平移,这样的图形移动称为平移图形平移图形平移有两个基本有两个基本条件条件(1)(1)图形平移的方向就是这个图形上的某一点图形平移的方向
15、就是这个图形上的某一点到平移后的图形对应点的方向;到平移后的图形对应点的方向;(2)(2)图形平移图形平移的距离就是连接一对对应点的线段的长度的距离就是连接一对对应点的线段的长度平移性质平移性质(1)(1)对应线段平行对应线段平行( (或共线或共线) )且且_,对应,对应点所连的线段点所连的线段_,图形上的每个点,图形上的每个点都沿同一个方向移动了相同的距离都沿同一个方向移动了相同的距离(2)(2)对应角分别对应角分别_,且对应角的两边分,且对应角的两边分别平行、方向一致别平行、方向一致(3)(3)平移变换后的图形与原图形平移变换后的图形与原图形_方向方向 距离距离 相等相等平行且相等平行且相
16、等相等相等全等全等第第33讲讲 考点聚焦考点聚焦考点考点2 2 旋转旋转 定义定义在平面内,把一个图形绕着某一个定点在平面内,把一个图形绕着某一个定点沿着某个方向旋转一定的角度,这样的沿着某个方向旋转一定的角度,这样的图形运动称为旋转这个定点叫做图形运动称为旋转这个定点叫做_,转动的角叫做,转动的角叫做_图形的旋转有三图形的旋转有三个基本条件个基本条件(1)(1)旋转中心;旋转中心;(2)(2)旋转方向;旋转方向;(3)(3)旋转角旋转角度度旋转的旋转的性质性质(1)(1)对应点到旋转中心的距离对应点到旋转中心的距离_(2)(2)对应点与旋转中心所连线段的夹角等对应点与旋转中心所连线段的夹角等
17、于于_(3)(3)旋转前后的图形旋转前后的图形_旋转中心旋转中心 旋转角旋转角相等相等旋转角旋转角全等全等第第33讲讲 归类示例归类示例归类示例归类示例 类型之一图形的平移类型之一图形的平移 命题角度:命题角度:1. 平移的概念;平移的概念;2. 平移前后的两个图形的对应角、对应线段的关系平移前后的两个图形的对应角、对应线段的关系C例例1 2012义乌义乌如图如图331,将周长为,将周长为8的的ABC沿沿BC方向平移方向平移1个单位得到个单位得到DEF,则四边形,则四边形ABFD的周长为的周长为()A6 B8 C10 D12图图331第第33讲讲 归类示例归类示例 解析解析 将周长为将周长为8
18、 8个单位的等边个单位的等边ABCABC沿边沿边BCBC向右向右平移平移1 1个单位得到个单位得到DEFDEF,ADAD1 1,BFBFBCBCCFCFBCBC1 1,DFDFAC.AC.又又ABABBCBCACAC8 8,四边形四边形ABFDABFD的周长的周长ADADABABBFBFDFDF1 1ABABBCBC1 1ACAC10 10 第第33讲讲 归类示例归类示例利用利用“平移前后的两个图形全等平移前后的两个图形全等”,“平移前后平移前后对应线段平行且相等对应线段平行且相等”是解决平移问题的基本方是解决平移问题的基本方法法 类型之二类型之二图形的旋转图形的旋转命题角度:命题角度:1.
19、1. 旋转的概念;旋转的概念;2. 2. 求旋转中心、旋转角;求旋转中心、旋转角;3. 3. 求旋转后图形的位置和点的坐标求旋转后图形的位置和点的坐标第第33讲讲 归类示例归类示例例例2 2 20122012南充南充 在在RtRtPOQPOQ中,中,OPOPOQOQ4 4,M M是是PQPQ中点,把一三角尺的直角顶点放在点中点,把一三角尺的直角顶点放在点M M处,以处,以M M为旋转中心为旋转中心,旋转三角尺,三角尺的两直角边与,旋转三角尺,三角尺的两直角边与POQPOQ的两直角边分别的两直角边分别交于点交于点A A、B B. .(1)(1)求证:求证:MAMAMBMB;(2)(2)连接连接A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 中考 数学 复习 方案 第七 单元 几何 变换 投影 视图 课件 新人
限制150内