初中数学创新性开放性(2).ppt
《初中数学创新性开放性(2).ppt》由会员分享,可在线阅读,更多相关《初中数学创新性开放性(2).ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、创新型、开放型问题创新型、开放型问题第二讲第二讲萧城二中萧城二中 第一类:找规律问题第一类:找规律问题 这类问题要求大家通过观察这类问题要求大家通过观察,分析分析,比较比较,概括概括,总结出题设反映的某总结出题设反映的某种规律种规律,进而利用这个规律解决相关进而利用这个规律解决相关问题问题例例1 1:观察下列算式:观察下列算式: 2 21 1=2 2=2 22 2=4 2=4 23 3=8 =8 2 24 4=16 2=16 25 5=32 2=32 26 6=64 =64 2 27 7=128 2=128 28 8=256=256通过观察,用你所发现的规律写出通过观察,用你所发现的规律写出8
2、 89 9的末位数的末位数字是字是。第一列第一列第二列第二列第三列第三列第四列第四列第一行第一行2 21 1=2=22 22 2=4=42 23 3=8=82 24 4=16=16第二行第二行2 25 5=32=322 26 6=64=642 27 7=128=1282 28 8=256=256第三行第三行8例例1 1:观察下列算式:观察下列算式: 2 21 1=2 2=2 22 2=4 2=4 23 3=8 =8 2 24 4=16 2=16 25 5=32 2=32 26 6=64 =64 2 27 7=128 2=128 28 8=256=256通过观察,用你所发现的规律写出通过观察,用
3、你所发现的规律写出8 89 9的末的末位数位数字是字是。 第二类第二类: :探求条件问题探求条件问题 这种问题是指所给问题结论明确这种问题是指所给问题结论明确, ,而而寻求使结论成立的条件寻求使结论成立的条件. .大致有三种类型大致有三种类型 (1)(1)条件未知需探求条件未知需探求 (2)(2)条件不足条件不足需补充条件需补充条件 (3)(3)条件多余或有错条件多余或有错, ,需排需排除条件或修正错误条件除条件或修正错误条件例例2:2:已知已知: :如图如图,AB,AB、 AC AC 分别是分别是OO 的直径和弦,的直径和弦,D D为劣弧为劣弧 ACAC上一点,上一点,DEABDEAB于点于
4、点H H,交,交OO于点于点E E,交,交ACAC于点于点F F,P P为为EDED的延长线上一点,的延长线上一点,(1 1)当)当PCFPCF满足什满足什么条件时,么条件时,PCPC与与OO相切,为什么?相切,为什么?2 2)当点)当点D D在劣弧在劣弧ACAC的的什么位置时,才能使什么位置时,才能使ADAD2 2=DE=DE DF. DF.为什么为什么? ? 分析:要知分析:要知PCPC与与00相切,需知相切,需知PCOCPCOC,即,即PCO=90PCO=90,CAB+AFHCAB+AFH=90=90,而,而CAB=OCACAB=OCA,AFH=PFCAFH=PFC,PFC+OCAPFC
5、+OCA=90=90,当当PFC=PCFPFC=PCF时,时,PCO=90PCO=90. .解解 :(1):(1)当当PC=PF(PC=PF(或或PCF=PFC,PCF=PFC,或或PCFPCF为等边三角形为等边三角形) )时时,PC,PC与与 OO相切相切. . 连结连结OC,OC,则则OCA=FAH.OCA=FAH.PC=PF PCF=PFC=AFHPC=PF PCF=PFC=AFHDE AB DE AB OCA+PCF=FAH+AFH=90OCA+PCF=FAH+AFH=900 0即即OC PC, PCOC PC, PC与与OO相切相切. .(2 2)当点)当点D D在劣弧在劣弧ACAC
6、的什么位的什么位置时,才能使置时,才能使ADAD2 2=DE=DE DF. DF.为什么为什么? ?分析分析: :要使要使ADAD2 2=DE =DE DFDF需知需知ADFADFEDAEDA证以上两三角形相证以上两三角形相似似, ,除公共角外除公共角外, ,还还需证需证DAC=DEADAC=DEA故应知故应知AD=CDAD=CD解:(解:(2 2)当点)当点D D是是ACAC的中点时,的中点时, ADAD2 2=DE=DE DF. DF. 连结连结AE.AE. AD=CD DAF=DEA AD=CD DAF=DEA 又又ADF=EDA ADF=EDA DAFDAFDEADEA即即ADAD2
7、2=DE=DE DF DFADDFDEAD 第三类第三类: :探求结论问题探求结论问题 这类问题是指题目中的结这类问题是指题目中的结论不确定论不确定, ,不惟一不惟一, ,或结论需要或结论需要通过类比通过类比, ,引申引申, ,推广或由已知推广或由已知特殊结论特殊结论, ,归纳出一般结论归纳出一般结论例3:已知,O1经过O2的圆心O2,且与O2相交于A、B两点,点C为AO2B上的一动点(不运动至A、B)连结AC,并延长交O2于点P,连结BP、BC .(1)先按题意将图1补完整,然后操作,观察.图1供操作观察用,操作时可使用量角器与刻度尺.当点C在AO2B 上运动时,图中有哪些角的大小没有变化;
8、(2)请猜想BCP的形状,并证明你的猜想(图2供证明用)(3)如图3,当PA经过点O2时,AB=4,BP交O1于D,且PB、DB的长是方程x2+kx+10=0的两个根,求O1的半径的半径. 例3:已知,O1经过O2的圆心O2,且与O2相交于A、B两点,点C为AO2B上的一动点(不运动至A、B)连结AC,并延长交O2于点P,连结BP、BC .(1)先按题意将图1补完整,然后操作,观察.图1供操作观察用,操作时可使用量角器与刻度尺.当点C在AO2B 上运动时,图中有哪些角的大小没有变化;(2)请猜想BCP的形状,并证明你的猜想(图2供证明用)(2 2)证明:连结)证明:连结O O2 2A A、O
9、O2 2B B,则则BOBO2 2A=ACB A=ACB BO BO2 2A=2PA=2PACB=2PACB=2PACB=P+PBCACB=P+PBCP=PBCP=PBCBCPBCP为等腰三角形为等腰三角形.(3)如图3,当PA经过点O2时,AB=4,BP交O1于D,且PB、DB的长是方程x2+kx+10=0的两个根,求O1的的半径半径. 连结连结O O2 2O O1 1并延长交并延长交ABAB于于E E,交,交O O1 1于于F F设设O O1 1、OO2 2的半径的半径分别为分别为r r、R R,OO2 2FABFAB,EB=1/2AB=2EB=1/2AB=2,PDBPDB、POPO2 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 创新 开放性
限制150内