12.3角平分线的性质和判定.ppt
《12.3角平分线的性质和判定.ppt》由会员分享,可在线阅读,更多相关《12.3角平分线的性质和判定.ppt(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、角平分线的性质,复习提问,1、角平分线的概念,一条射线,把一个角,分成两个相等的角,,这条射线叫做这个角的平分线。,复习提问,2、点到直线距离:,从直线外一点,到这条直线的垂线段,的长度,,叫做点到直线的距离。,如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?,你能由上面的探究得出作已知角的平分线的方法吗?,探究1:,E,角的平分线的作法,证明: 在ACD和ACB中 AD=AB(已知) DC=BC(已知) CA=CA(公共边) ACD ACB(SSS) CAD=CAB(全等三角形的
2、 对应边相等) AC平分DAB(角平分线的定义),尺规作角的平分线,观察领悟作法,探索思考证明方法:,A,画法:,以为圆心,适当长为半径作弧,交于,交于,分别以,为圆心大于 1/2 的长为半径作弧两弧在的内部交于,作射线,射线即为所求,A,为什么OC是角平分线呢?,想一想:,已知:OM=ON,MC=NC。求证:OC平分AOB。,证明:在OMC和ONC中, OM=ON, MC=NC, OC=OC, OMC ONC(SSS) MOC=NOC 即:OC平分AOB,已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别是D,E。,求证:PD=PE,证明: PDOA,PEOB(已知
3、)PDO=PEO=90(垂直的定义),在PDO和PEO中, PD=PE(全等三角形的对应边相等), PDO= PEO AOC= BOC OP=OP, PDO PEO(AAS),角的平分线上的点到这个角的两边的距离相等。,角平分线的性质,定理:角的平分线上的点到角的两边的距离相等,用符号语言表示为:,A,O,B,P,1,2, 1= 2 PD OA ,PE OBPD=PE(角的平分线上的点到角的两边的距离相等),推理的理由有三个,必须写完全,不能少了任何一个。,角平分线的性质,角的平分线上的点到角的两边的距离相等。,定理应用所具备的条件:,定理的作用:,证明线段相等。, 如图,AD平分BAC(已知
4、), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,BD CD,(),判断:,练习, 如图, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,BD CD,(), AD平分BAC, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,不必再证全等,练习,如图, OC是AOB的平分线, 又 _PD=PE ( ),PDOA,PEOB,角的平分线上的点到角的两边的距离相等,在OAB中,OE是它的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D.求证:AC=BD.,在ABC中, C=90
5、,AD为BAC的平分线,DEAB,BC7,DE3.求BD的长。,如图,在ABC中,C=90 AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB,这节课我们学习了哪些知识?,小 结,1、“作已知角的平分线”的尺规作图法;,2、角的平分线的性质: 角的平分线上的点到角的两边的距离相等。, OC是AOB的平分线, 又 PDOA,PEOB PD=PE (角的平分线上的点到角的两边距离相等).,几何语言:,,,1、在RtABC中,BD是角平分线,DEAB,垂足为E,DE与DC相等吗?为什么?,知识应用,1 . 如图,DEAB,DFBC,垂足分别是E,F, DE =DF, ED
6、B= 60,则 EBF= 度,BE= 。,60,BF,2 如图,在ABC中,C=90,DEAB,1=2,且AC=6cm,那么线段BE是ABC的 ,AE+DE=。,角的平分线,6cm,练习,3.已知ABC中, C=900,AD平分 CAB,且BC=8,BD=5,求点D到AB的距离是多少?,A,B,C,D,E,例 已知:如图,ABC的角平分线BM、CN相交于点P。求证:点P到三边AB、BC、CA的距离相等.,证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F BM是ABC的角平分线,点P在BM上 PD=PE(在角平分线上的点到角的两边的距离相等) 同理 PE=PF. PD
7、=PE=PF. 即点P到边AB、BC、 CA的距离相等,A,B,C,M,N,P,怎样找三角形内到三角形三边距离相等的点?,如图,的的外角的平分线与的外角的平分线相交于点求证:点到三边、所在直线的距离相等,F,G,H,如图,由 于点 D , 于点 E,PD= PE , 可以得到什么结论 ?,议一议,到一个角的两边的距离相等的点, 在这个角的平分线上。,已知:如图, , ,垂足分别是 A、B,PD=PE , 求证:点P在 的角平分线上。,到角的两边的距离相等的点 在角的平分线上。,已知:如图, , , 垂足分别是 D、E,PD=PE, 求证:点P在 的角平分线上。,证明:,作射线OP, 点P在 角
8、的平分线上,在 RtPDO 和RtPEO 中,,( HL),(全等三角形的对应角相等),OP = OP (公共边),PD = PE ( 已 知 ),角平分线的判定,角平分线的判定的应用书写格式:,OP 是 的平分线,PD= PE,(到一个角的两边的距离相等的点, 在这个角的平分线上),角平分线的性质:在角的平分线上的点到这个角的两边的距离相等。,角平分线的判定到一个角的两边的距离相等的点, 在这个角的平分线上。,PD = PE,用途:证线段相等,用途:判定一条射线是角平分线,练一练,填空:(1). 1= 2,DCAC, DEAB _(_)(1). DCAC ,DEAB ,DC=DE_(_ _)
9、,1= 2,DC=DE,到一个角的两边的距离相等的点,在这个角平分线上。,在角平分线上的点到角的两边的距离相等,例1.如图,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E、F,且BECF。求证:AD是ABC的角平分线。,1.已知:如图,BEAC于E, CFAB于F,BE、CF相交于D, BD=CD 。求证: AD平分BAC 。,课堂练习,拓展与延伸,2.已知:BDAM于点D,CEAN于点E,BD,CE交点F,CF=BF,求证:点F在A的平分线上.,3、已知PA=PB, 1+ 2=1800, 求证:OP平分AOB,A,O,B,P,1,2,E,F,E,D,F,M,N,例题2.如图,A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12.3 平分线 性质 判定
限制150内