3.4实际问题与一元一次方程(第1课时).ppt





《3.4实际问题与一元一次方程(第1课时).ppt》由会员分享,可在线阅读,更多相关《3.4实际问题与一元一次方程(第1课时).ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章 一元一次方程,3.4实际问题与一元二次方程第1课时,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依 据的主要等量关系. (难点)3. 掌握用一元一次方程解决实际问题的基本过 程.(重点),学习目标,导入新课,前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用. 生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家能举出生活中配套问题的例子吗?,情景引入,讲授新课,例1 某车间有22名工人,每人每天可以生产1 2
2、00个螺钉或2 000个螺母. 1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?,想一想:本题需要我们解决的问题是什么?题目中哪些信息能解决人员安排的问题?螺母和螺钉的数量关系如何?,典例精析,产品配套问题,如果设x名工 人生产螺母,怎 样列方程?,列表分析:,人数和为22人,22x,螺母总产量是螺钉的2倍,等量关系:螺母总量=螺钉总量2,解:设应安排 x 名工人生产螺钉,(22x)名工人生 产螺母. 依题意,得 2000(22x)21200x . 解方程,得 x10. 所以 22x12. 答:应安排10名工人生产螺钉,12名工人生产 螺母.,列
3、表分析:,1200 x,22x,2000(22x),1200 x,解:设应安排 x 名工人生产螺钉,(22x)名工人生 产螺母.依题意,得,解方程,得 x10.所以2x12.,方法归纳,生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.,如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?,变式训练,分析:由图可得,一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍,32
4、-x,6(32-x),等量关系:白皮边数=黑皮边数2,解:设足球上黑皮有x块,则白皮为(32-x)块,五边形的边数共有5x条,六边形边数有6(32-x)条依题意,得 25x=6(32-x),解得x=12,则32-x=20.答:白皮20块,黑皮12块.,一套仪器由一个 A 部件和三个 B 部件构成. 用1 立方米钢材可做 40 个 A 部件或 240 个 B 部件.现要用 6 立方米钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套? 分析:由题意知 B 部件的数量是 A 部件数量的 3 倍,可根据这一等量关系式得到方程.,做一做,解:设应用 x 立
5、方米钢材做 A 部件,则应用(6x) 立方米做 B 部件. 根据题意,列方程: 340x = (6x)240. 解得 x = 4. 则 6x = 2. 共配成仪器:440=160 (套).,答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.,如果把总工作量设为1,则人均效率 (一个人 1 h 完成的工作量) 为 ,x人先做 4h 完成的工作量为 ,增加 2 人后再做 8h 完成的工作量为 ,,这两个工作量之和等于 .,例2 整理一批图书,由一个人做要 40 h 完成. 现计划由一部分人先做 4 h,然后增加 2人与他们一起做8 h,完成这项工作. 假设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 实际问题 一元一次方程 课时

限制150内