21.3实际问题与一元二次方程(第1课时).ppt
《21.3实际问题与一元二次方程(第1课时).ppt》由会员分享,可在线阅读,更多相关《21.3实际问题与一元二次方程(第1课时).ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十一章 一元二次方程,21.3实际问题与一元二次方程第1课时,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,学习目标,1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.(重点)2.正确分析问题(传播问题)中的数量关系.(难点)3.会找出实际问题(传播问题等)中的相等关系并建模解决问题.,讲授新课,引例:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?,分析 :设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下:,合作探究,传播问题与一元二次方程,第2轮,小明,1,2,x,第1
2、轮,第1轮传染后人数x+1,小明,第2轮传染后人数x(x+1)+x+1,注意:不要忽视小明的二次传染,x1= , x2= .,根据示意图,列表如下:,解方程,得,答:平均一个人传染了_个人.,10,-12,(不合题意,舍去),10,解:设每轮传染中平均一个人传染了x个人.,(1+x)2=121,注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.,1+x=(1+x)1,1+x+x(1+x)=(1+x)2,想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?,第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331人.,分析,第
3、1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.,(1+x)3,思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?,(1+x)2,(1+x)n,(1+x)3,经过n轮传染后共有 (1+x)n 人患流感.,(1+x)2,(1+x)2x,(1+x)2+(1+x)2x=,例1:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?,主干,支干,支干,小分支,小分支,小分支,小分支,x,x,x,1,解:设每个支干长出x个小分支,则 1+x+x2=91,即,解得,x1=9,x2=10(不合
4、题意,舍去),答:每个支干长出9个小分支.,交流讨论,1.在分析引例和例1中的数量关系时它们有何区别?,每个树枝只分裂一次,每名患者每轮都传染.,2.解决这类传播问题有什么经验和方法?,(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.,方法归纳,建立一元二次方程模型,检 验,运用一元二次方程模型解决实际问题的步骤有哪些?,设未知数,分析数量关系,例2:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4
5、轮感染后,被感染的电脑会不会超过 7000 台?,解:设每轮感染中平均一台电脑会感染 x 台电脑,则 1xx(1x)100,即(1x)2100. 解得 x19,x211(舍去)x9.,4轮感染后,被感染的电脑数为(1x)41047000.,答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台,1.电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染. 每轮感染中平均一台电脑会感染几台电脑?,练一练,解:设每轮感染中平均一台电脑会感染x台电脑.,答:每轮感染中平均一台电脑会感染8台电脑; 第三轮感染中,被感染的电脑台
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 21.3 实际问题 一元 二次方程 课时
限制150内