25.1随机事件与概率(第2课时).ppt
《25.1随机事件与概率(第2课时).ppt》由会员分享,可在线阅读,更多相关《25.1随机事件与概率(第2课时).ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十五章 概率初步,25.1随机事件与概率第2课时,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.(重点)3.会进行简单的概率计算及应用.(难点),学习目标,思考:在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?,讲授新课,概率的定义及适用对象,活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.,因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所
2、以我们可以用 表示每一个数字被抽到的可能性大小.,活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.,因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用 表示每一种点数出现的可能性大小.,一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).,概率的定义,例如 :“抽到1”事件的概率:P(抽到1)=,想一想 “抽到奇数”事件的概率是多少呢?,互动探究,试验1:抛掷一个质地均匀的骰子,(1)它落地时向上的点数有几种可能的结果?,(2)各点数出现的可能性会相等吗?,(3)试猜想:各点数出现的可能性
3、大小是多少?,6种,相等,简单概率的计算,试验2: 掷一枚硬币,落地后:,(1)会出现几种可能的结果?,(2)正面朝上与反面朝上的可能性会相等吗?,(3)试猜想:正面朝上的可能性有多大呢?,开始,正面朝上,反面朝上,两种,相等,(1)每一次试验中,可能出现的结果只有有限个;,(2)每一次试验中,各种结果出现的可能性相等.,具有两个共同特征:,上述试验都具有什么样的共同特点?,具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.,在这些试验中出现的事件为等可能事件.,1.一个袋中有5个球,分别标有1,2,3,4,5 这5个号码,这些球除号
4、码外都相同,搅匀后 任意摸出一个球. (1)会出现哪些可能的结果? (2)每个结果出现的可能性相同吗?猜一猜它们 的概率分别是多少?,议一议,1,2,3,4,5,一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:,归纳总结,事件发生的可能性越来越大,事件发生的可能性越来越小,不可能发生,必然发生,概率的值,事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.,例1:任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?,解:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 25.1 随机 事件 概率 课时
限制150内