2016届中考数学总复习(28)图形的相似-精练精析(2)及答案解析.doc
《2016届中考数学总复习(28)图形的相似-精练精析(2)及答案解析.doc》由会员分享,可在线阅读,更多相关《2016届中考数学总复习(28)图形的相似-精练精析(2)及答案解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、图形的变化图形的变化图形的相似图形的相似 2 2一选择题(共一选择题(共 9 9 小题)小题)1如图,四边形 ABCD、CEFG 都是正方形,点 G 在线段 CD 上,连接 BG、DE,DE 和 FG 相交 于点 O,设 AB=a,CG=b(ab) 下列结论:BCGDCE;BGDE;=;(ab)2SEFO=b2SDGO其中结论正确的个数是( )A4 个 B3 个 C2 个 D1 个2ABC 与ABC是位似图形,且ABC 与ABC的位似比是 1:2,已知 ABC 的面积是 3,则ABC的面积是( ) A3B6C9D123如图,在ABC 中,点 D,E 分别在边 AB,AC 上,DEBC,已知 A
2、E=6,则 EC的长是( )A4.5B8C10.5 D144如图,直线 l1l2l3,若 AB=2,BC=3,DE=1,则 EF 的值为( )A B C6D5已知ABC 的三边长分别为,2,ABC的两边长分别是 1 和,如果 ABC 与ABC相似,那么ABC的第三边长应该是( )ABCD6如图,ABCCBD,CD=2,AC=3,BC=4,那么 AB 的值等于( )A5B6C7D47如果两个相似三角形的面积比是 1:2,那么它们的周长比是( ) A1:2 B1:4 C1:D2:18 (易错题)如图,ABCD 中,E 是 AD 延长线上一点,BE 交 AC 于点 F,交 DC 于点 G,则 下列结
3、论中错误的是( )AABEDGE BCGBDGE CBCFEAF DACDGCF9如图,在ABC 中,如果 DE 与 BC 不平行,那么下列条件中,不能判断ADEABC 的 是( )AADE=CBAED=BCD二填空题(共二填空题(共 6 6 小题)小题)10已知实数 x、y 满足,则= _ 11如图,小明用长为 3m 的竹竿 CD 做测量工具,测量学校旗杆 AB 的高度,移动竹竿,使 竹竿与旗杆的距离 DB=12m,则旗杆 AB 的高为 _ m12如图,ABCDEF,如果 AC:CE=2:3,BF=10,那么线段 DF 的长为 _ 13如图,在长 8cm,宽 4cm 的矩形中截去一个矩形(阴
4、影部分)使留下的矩形与矩形相 似,那么留下的矩形的面积为 _ cm214已知ABCDEF,且相似比为 3:4,SABC=2cm2,则 SDEF= _ cm215两个相似三角形对应边的比为 2:3,则它们的周长比为 _ 三解答题(共三解答题(共 9 9 小题)小题)16如图,矩形 ABCD 为台球桌面,AD=260cm,AB=130cm,球目前在 E 点位置, AE=60cm如果小丁瞄准 BC 边上的点 F 将球打过去,经过反弹后,球刚好弹到 D 点位置 (1)求证:BEFCDF; (2)求 CF 的长17已知:ABC 在直角坐标平面内,三个顶点的坐标分别为 A(0,3) 、B(3,4) 、 C
5、(2,2) (正方形网格中每个小正方形的边长是一个单位长度) (1)画出ABC 向下平移 4 个单位长度得到的A1B1C1,点 C1的坐标是 _ ; (2)以点 B 为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC 位似,且位似比为 2:1,点 C2的坐标是 _ ; (3)A2B2C2的面积是 _ 平方单位18如图,已知MON=90,A 是MON 内部的一点,过点 A 作 ABON,垂足为点 B,AB=3 厘米,OB=4 厘米,动点 E,F 同时从 O 点出发,点 E 以 1.5 厘米/秒的速度沿 ON 方向运动, 点 F 以 2 厘米/秒的速度沿 OM 方向运动,EF 与 OA
6、交于点 C,连接 AE,当点 E 到达点 B 时, 点 F 随之停止运动设运动时间为 t 秒(t0) (1)当 t=1 秒时,EOF 与ABO 是否相似?请说明理由; (2)在运动过程中,不论 t 取何值时,总有 EFOA为什么? (3)连接 AF,在运动过程中,是否存在某一时刻 t,使得 SAEF=S四边形 AEOF?若存在,请 求出此时 t 的值;若不存在,请说明理由19如图,在平行四边形 ABCD 中,点 G 是 BC 延长线上一点,AG 与 BD 交于点 E,与 DC 交 于点 F,如果 AB=m,CG=BC, 求:(1)DF 的长度; (2)三角形 ABE 与三角形 FDE 的面积之
7、比20如图,已知ABC 是等边三角形,AB=6,点 D 在 AC 上,AD=2CD,CM 是ACB 的外角平 分线,连接 BD 并延长与 CM 交于点 E (1)求 CE 的长; (2)求EBC 的正切值21已知:如图,在平行四边形 ABCD 中,E、F 分别是边 BC,CD 上的点,且 EFBD,AE、AF 分别交 BD 与点 G 和点 H,BD=12,EF=8求:(1)的值;(2)线段 GH 的长22如图,在ABC 中,AD 平分BAC 交 BC 于点 D点 E、F 分别在边 AB、AC 上,且 BE=AF,FGAB 交线段 AD 于点 G,连接 BG、EF (1)求证:四边形 BGFE
8、是平行四边形; (2)若ABGAGF,AB=10,AG=6,求线段 BE 的长23如图,点 P 是菱形 ABCD 的对角线 BD 上一点,连接 CP 并延长,交 AD 于 E,交 BA 的延 长线点 F问: (1)图中APD 与哪个三角形全等?并说明理由; (2)求证:APEFPA; (3)猜想:线段 PC,PE,PF 之间存在什么关系?并说明理由24如图在ABC 中,BCAC,点 D 在 BC 上,且 DC=AC,ACB 的平分线 CF 交 AD 于点 F,点 E 是 AB 的中点,连接 EF(1)求证:EFBC; (2)若四边形 BDFE 的面积为 6,求ABD 的面积图形的变化图形的变化
9、图形的相似图形的相似 2 2 参考答案与试题解析参考答案与试题解析一选择题(共一选择题(共 9 9 小题)小题) 1如图,四边形 ABCD、CEFG 都是正方形,点 G 在线段 CD 上,连接 BG、DE,DE 和 FG 相交 于点 O,设 AB=a,CG=b(ab) 下列结论:BCGDCE;BGDE;=;(ab)2SEFO=b2SDGO其中结论正确的个数是( )A4 个B3 个C2 个D1 个考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质 专题:压轴题 分析:由四边形 ABCD 和四边形 CEFG 是正方形,根据正方形的性质,即可得 BC=DC,CG=CE,BCD=ECG
10、=90,则可根据 SAS 证得BCGDCE;然后延长 BG 交 DE 于点 H,根据全等三角形的对应角相等,求得CDE+DGH=90,则可得BHDE由 DGF 与DCE 相似即可判定错误,由GOD 与FOE 相似即可求得 解答:证明:四边形 ABCD 和四边形 CEFG 是正方形, BC=DC,CG=CE,BCD=ECG=90, BCG=DCE, 在BCG 和DCE 中,BCGDCE(SAS) , 故正确;延长 BG 交 DE 于点 H, BCGDCE, CBG=CDE, 又CBG+BGC=90, CDE+DGH=90, DHG=90, BHDE; BGDE 故正确;四边形 GCEF 是正方形
11、, GFCE,=,=是错误的故错误;DCEF, GDO=OEF, GOD=FOE, OGDOFE,=()2=()2=,(ab)2SEFO=b2SDGO 故正确;故选:B点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定 和性质,直角三角形的判定和性质2ABC 与ABC是位似图形,且ABC 与ABC的位似比是 1:2,已知 ABC 的面积是 3,则ABC的面积是( ) A3B6C9D12考点:位似变换 分析:利用位似图形的面积比等于位似比的平方,进而得出答案 解答:解:ABC 与ABC是位似图形,且ABC 与ABC的位似比 是 1:2,ABC 的面积是 3, ABC 与ABC
12、的面积比为:1:4, 则ABC的面积是:12 故选:D 点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平 方得出是解题关键3如图,在ABC 中,点 D,E 分别在边 AB,AC 上,DEBC,已知 AE=6,则 EC的长是( )A4.5B8C10.5D14考点:平行线分线段成比例分析:利用相似三角形的判定与性质得出=,求出 EC 即可解答:解:DEBC, ADEABC,=,=,解得:EC=8 故选:B点评:此题主要考查了相似三角形的判定与性质,得出=是解题关键4如图,直线 l1l2l3,若 AB=2,BC=3,DE=1,则 EF 的值为( )ABC6D考点:平行线分线段成
13、比例 分析:根据平行线分线段成比例定理得出比例式,再代入求出即可 解答:解:直线 l1l2l3,=,AB=2,BC=3,DE=1,=,EF=, 故选 B 点评:本题考查平行线分线段成比例定理的应用,注意:一组平行线截两条直线, 所截的对应线段成比例5已知ABC 的三边长分别为,2,ABC的两边长分别是 1 和,如果 ABC 与ABC相似,那么ABC的第三边长应该是( )ABCD考点:相似三角形的性质 分析:根据题中数据先计算出两相似三角形的相似比,则第三边长可求 解答:解:根据题意,易证ABCABC,且相似比为:1,ABC的第三边长应该是=故选:A 点评:本题考查了相似三角形的性质:相似三角形
14、的对应边成比例6如图,ABCCBD,CD=2,AC=3,BC=4,那么 AB 的值等于( )A5B6C7D4考点:相似三角形的性质 分析:根据相似三角形对应边成比例列出比例式进行计算即可得解 解答:解:ABCCBD,=,即=,解得 AB=6 故选 B 点评:本题考查了相似三角形的性质,准确识图确定出对应边是解题的关键7如果两个相似三角形的面积比是 1:2,那么它们的周长比是( ) A1:2B1:4C1:D2:1考点:相似三角形的性质 分析:由两个相似三角形的面积比是 1:2,根据相似三角形的面积比等于相似比 的平方,即可求得它们的相似比,又由相似三角形周长的比等于相似比,即可求得它们的 周长比
15、 解答:解:两个相似三角形的面积比是 1:2, 这两个相似三角形的相似比是 1:, 它们的周长比是 1: 故选 C点评:此题考查了相似三角形的性质此题比较简单,解题的关键是掌握相似三 角形的面积比等于相似比的平方与相似三角形周长的比等于相似比性质的应用8 (易错题)如图,ABCD 中,E 是 AD 延长线上一点,BE 交 AC 于点 F,交 DC 于点 G,则 下列结论中错误的是( )AABEDGEBCGBDGECBCFEAFDACDGCF考点:相似三角形的判定;平行四边形的性质 专题:常规题型 分析:本题中可利用平行四边形 ABCD 中两对边平行的特殊条件来进行求解 解答:解:四边形 ABC
16、D 是平行四边形ABCD EDG=EAB E=E ABEDGE(第一个正确)AEBC EDC=BCG,E=CBG CGBDGE(第二个正确)AEBC E=FBC,EAF=BCF BCFEAF(第三个正确) 第四个无法证得,故选 D 点评:考查相似三角形的判定定理: (1)两角对应相等的两个三角形相似; (2)两边对应成比例且夹角相等的两个三角形相似; (3)三边对应成比例的两个三角形相似; (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对 应成比例,那么这两个直角三角形相似9如图,在ABC 中,如果 DE 与 BC 不平行,那么下列条件中,不能判断ADEABC
17、的 是( )AADE=CBAED=BCD考点:相似三角形的判定 分析:根据相似三角形的判定方法:(1)三组对应边的比相等的两个三角形相似; (2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的 两个三角形相似,结合选项进行判断即可 解答:解:A、ADE=C,A=A,则可判断ADEACB,故本选项错误; B、B=AED,A=A,则可判断ADEACB,故本选项错误;C、=,此时不等确定ADE=ACB,故不能确定ADEACB,故本选项正确;D、=,A=A,则可判断ADEACB,故本选项错误故选 C 点评:此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几 种
18、判定定理二填空题(共二填空题(共 6 6 小题)小题)10已知实数 x、y 满足,则= 2 考点:比例的性质 分析:先用 y 表示出 x,然后代入比例式进行计算即可得解 解答:姐: =, x=y,=2故答案为:2 点评:本题考查了比例的性质,根据两內项之积等于两外项之积用 y 表示出 x 是 解题的关键11如图,小明用长为 3m 的竹竿 CD 做测量工具,测量学校旗杆 AB 的高度,移动竹竿,使 竹竿与旗杆的距离 DB=12m,则旗杆 AB 的高为 9 m考点:相似三角形的应用 专题:几何图形问题 分析:根据OCD 和OAB 相似,利用相似三角形对应边成比例列式求解即可 解答:解:由题意得,C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 中考 数学 复习 28 图形 相似 精练 答案 解析
限制150内