2016届中考数学总复习(15)一次函数-精练精析(2)及答案解析.doc
《2016届中考数学总复习(15)一次函数-精练精析(2)及答案解析.doc》由会员分享,可在线阅读,更多相关《2016届中考数学总复习(15)一次函数-精练精析(2)及答案解析.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函数函数一次函数一次函数 2 2一选择题(共一选择题(共 8 8 小题)小题)1已知点 M(1,a)和点 N(2,b)是一次函数 y=2x+1 图象上的两点,则 a 与 b 的大小 关系是( ) Aab Ba=bCab D以上都不对2如图,在平面直角坐标系中,点 A(2,m)在第一象限,若点 A 关于 x 轴的对称点 B 在 直线 y=x+1 上,则 m 的值为( )A1B1C2D33若点(3,1)在一次函数 y=kx2(k0)的图象上,则 k 的值是( ) A5B4C3D14若点 A(2,m)在正比例函数 y=x 的图象上,则 m 的值是( ) A BC1D1 5如图,A 点的坐标为(4,0
2、) ,直线 y=x+n 与坐标轴交于点 B,C,连接 AC,如果 ACD=90,则 n 的值为( )A2BCD6已知正比例函数 y=kx(k0)的图象上两点 A(x1,y1) 、B(x2,y2) ,且 x1x2,则下 列不等式中恒成立的是( ) Ay1+y20By1+y20Cy1y20 Dy1y207一次函数 y=kx+b(k0)的图象如图,则下列结论正确的是( )Ak=2Bk=3Cb=2Db=38将函数 y=3x 的图象沿 y 轴向上平移 2 个单位长度后,所得图象对应的函数关系式为 ( ) Ay=3x+2 By=3x2Cy=3(x+2) Dy=3(x2) 二填空题(共二填空题(共 8 8
3、小题)小题)9如图,已知函数 y=2x+b 与函数 y=kx3 的图象交于点 P,则不等式 kx32x+b 的解 集是 _ 10将直线 y=2x+1 平移后经过点(2,1) ,则平移后的直线解析式为 _ 11在平面直角坐标系 xOy 中,已知一次函数 y=kx+b(k0)的图象过点 P(1,1) ,与 x 轴交于点 A,与 y 轴交于点 B,且 tanABO=3,那么点 A 的坐标是 _ 12如图,直线 y=kx+b 过 A(1,2) 、B(2,0)两点,则 0kx+b2x 的解集为 _ 13一次函数 y1=kx+b 与 y2=x+a 的图象如图,则 kx+bx+a 的解集是 _ 14过点(1
4、,7)的一条直线与 x 轴,y 轴分别相交于点 A,B,且与直线平行则在线段 AB 上,横、纵坐标都是整数的点的坐标是 _ 15直线 y=k1x+b1(k10)与 y=k2x+b2(k20)相交于点(2,0) ,且两直线与 y 轴围 成的三角形面积为 4,那么 b1b2等于 _ 16在平面直角坐标中,已知点 A(2,3) 、B(4,7) ,直线 y=kxk(k0)与线段 AB 有 交点,则 k 的取值范围为 _ 三解答题(共三解答题(共 8 8 小题)小题) 17随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越 多某厂家从去年开始投入生产净水器,生产净水器的总量 y(台)
5、与今年的生产天数 x(天)的关系如图所示今年生产 90 天后,厂家改进了技术,平均每天的生产数量达到 30 台 (1)求 y 与 x 之间的函数表达式; (2)已知该厂家去年平均每天的生产数量与今年前 90 天平均每天的生产数量相同,求厂 家去年生产的天数; (3)如果厂家制定总量不少于 6000 台的生产计划,那么在改进技术后,至少还要多少天 完成生产计划?18小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司 除收取每次 6 元的包装费外,樱桃不超过 1kg 收费 22 元,超过 1kg,则超出部分按每千克 10 元加收费用设该公司从西安到南昌快递樱桃的费用为 y(
6、元) ,所寄樱桃为 x(kg) (1)求 y 与 x 之间的函数关系式; (2)已知小李给外婆快寄了 2.5kg 樱桃,请你求出这次快寄的费用是多少元?19甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又 用了 3 小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪 50 吨,甲、乙两队在此路段的清雪总量 y(吨)与清雪时间 x(时)之间的函数图象如图 所示(1)乙队调离时,甲、乙两队已完成的清雪总量为 _ 吨; (2)求此次任务的清雪总量 m; (3)求乙队调离后 y 与 x 之间的函数关系式20快、慢两车分别从相距 480 千米路程的甲、乙两
7、地同时出发,匀速行驶,先相向而行, 途中慢车因故停留 1 小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达 乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计) ,快、慢两车距乙地的路程 y(千米)与所用时间 x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和 a 的值; (2)快车与慢车第一次相遇时,距离甲地的路程是多少千米? (3)两车出发后几小时相距的路程为 200 千米?请直接写出答案21已知,A、B 两市相距 260 千米,甲车从 A 市前往 B 市运送物资,行驶 2 小时在 M 地汽 车出现故障,立即通知技术人员乘乙车从 A 市
8、赶来维修(通知时间忽略不计) ,乙车到达 M 地后又经过 20 分钟修好甲车后以原速原路返回,同时甲车以原速 1.5 倍的速度前往 B 市, 如图是两车距 A 市的路程 y(千米)与甲车行驶时间 x(小时)之间的函数图象,结合图象 回答下列问题: (1)甲车提速后的速度是 _ 千米/时,乙车的速度是 _ 千米/时, 点 C 的坐标为 _ ; (2)求乙车返回时 y 与 x 的函数关系式并写出自变量 x 的取值范围; (3)求甲车到达 B 市时乙车已返回 A 市多长时间?22一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后 都停留一段时间,然后分别按原速一同驶往甲地后停
9、车设慢车行驶的时间为 x 小时,两 车之间的距离为 y 千米,图中折线表示 y 与 x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 _ 千米; (2)求快车和慢车的速度; (3)求线段 DE 所表示的 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围23如图,底面积为 30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何 体” ,现向容器内匀速注水,注满为止,在注水过程中,水面高度 h(cm)与注水时间 t(s)之间的关系如图所示请根据图中提供的信息,解答下列问题: (1)圆柱形容器的高为 _ cm,匀速注水的水流速度为 _ cm3/s; (2)若“
10、几何体”的下方圆柱的底面积为 15cm2,求“几何体”上方圆柱的高和底面积24为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动自行 车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发 1 小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成 2 小 时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶 速度是自行车队行驶速度的 2.5 倍,如图表示自行车队、邮政车离甲地的路程 y(km)与 自行车队离开甲地时间 x(h)的函数关系图象,请根据图象提供的信息解答下列各题: (1)自行车队行驶的速度是 _
11、 km/h; (2)邮政车出发多少小时与自行车队首次相遇? (3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?函数函数一次函数一次函数 2 2 参考答案与试题解析参考答案与试题解析一选择题(共一选择题(共 8 8 小题)小题) 1已知点 M(1,a)和点 N(2,b)是一次函数 y=2x+1 图象上的两点,则 a 与 b 的大小 关系是( ) AabBa=bCabD以上都不对考点:一次函数图象上点的坐标特征 分析:根据一次函数的增减性,k0,y 随 x 的增大而减小解答 解答:解:k=20, y 随 x 的增大而减小, 12, ab 故选:A 点评:本题考查了一次函数图象上点的坐标
12、特征,利用一次函数的增减性求解更 简便2如图,在平面直角坐标系中,点 A(2,m)在第一象限,若点 A 关于 x 轴的对称点 B 在 直线 y=x+1 上,则 m 的值为( )A1B1C2D3考点:一次函数图象上点的坐标特征;关于 x 轴、y 轴对称的点的坐标 专题:数形结合 分析:根据关于 x 轴的对称点的坐标特点可得 B(2,m) ,然后再把 B 点坐标代 入 y=x+1 可得 m 的值 解答:解:点 A(2,m) , 点 A 关于 x 轴的对称点 B(2,m) , B 在直线 y=x+1 上, m=2+1=1, m=1, 故选:B 点评:此题主要考查了关于 x 轴对称点的坐标,以及一次函
13、数图象上点的坐标特 点,关键是掌握凡是函数图象经过的点必能使解析式左右相等3若点(3,1)在一次函数 y=kx2(k0)的图象上,则 k 的值是( ) A5B4C3D1考点:一次函数图象上点的坐标特征 专题:待定系数法 分析:把点的坐标代入函数解析式计算即可得解 解答:解:点(3,1)在一次函数 y=kx2(k0)的图象上, 3k2=1, 解得 k=1 故选:D 点评:本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键4若点 A(2,m)在正比例函数 y=x 的图象上,则 m 的值是( ) ABC1D1考点:一次函数图象上点的坐标特征 专题:计算题 分析:利用待定系数法代入正比例函数
14、y=x 可得 m 的值 解答:解:点 A(2,m)在正比例函数 y=x 的图象上, m=(2)=1, 故选:C 点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象 经过的点必能满足解析式5如图,A 点的坐标为(4,0) ,直线 y=x+n 与坐标轴交于点 B,C,连接 AC,如果 ACD=90,则 n 的值为( )A2BCD考点:一次函数图象上点的坐标特征;解直角三角形分析:由直线 y=x+n 与坐标轴交于点 B,C,得 B 点的坐标为(n,0) ,C点的坐标为(0,n) ,由 A 点的坐标为(4,0) ,ACD=90,用勾股定理列出方程求出 n 的值 解答:解:直线 y=
15、x+n 与坐标轴交于点 B,C,B 点的坐标为(n,0) ,C 点的坐标为(0,n) ,A 点的坐标为(4,0) ,ACD=90,AB2=AC2+BC2, AC2=AO2+OC2,BC2=0B2+0C2, AB2=AO2+OC2+0B2+0C2,即(n+4)2=42+n2+(n)2+n2解得 n=,n=0(舍去) ,故选:C 点评:本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关 键是利用勾股定理列出方程求 n6已知正比例函数 y=kx(k0)的图象上两点 A(x1,y1) 、B(x2,y2) ,且 x1x2,则下 列不等式中恒成立的是( ) Ay1+y20By1+y20Cy1
16、y20Dy1y20考点:一次函数图象上点的坐标特征;正比例函数的图象 分析:根据 k0,正比例函数的函数值 y 随 x 的增大而减小解答 解答:解:直线 y=kx 的 k0, 函数值 y 随 x 的增大而减小, x1x2, y1y2, y1y20 故选:C 点评:本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增 减性7一次函数 y=kx+b(k0)的图象如图,则下列结论正确的是( )Ak=2Bk=3Cb=2Db=3考点:一次函数图象上点的坐标特征 分析:直接把点(2,0) , (0,3)代入一次函数 y=kx+b(k0) ,求出 k,b 的值 即可 解答:解:由函数图象可知函数
17、图象过点(2,0) , (0,3) ,解得故选:D点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的 坐标一定适合此函数的解析式是解答此题的关键8将函数 y=3x 的图象沿 y 轴向上平移 2 个单位长度后,所得图象对应的函数关系式为 ( ) Ay=3x+2By=3x2Cy=3(x+2)Dy=3(x2)考点:一次函数图象与几何变换 专题:几何变换 分析:直接利用一次函数平移规律, “上加下减”进而得出即可 解答:解:将函数 y=3x 的图象沿 y 轴向上平移 2 个单位长度, 平移后所得图象对应的函数关系式为:y=3x+2 故选:A 点评:此题主要考查了一次函数图象与几何变
18、换,熟练记忆函数平移规律是解题 关键二填空题(共二填空题(共 8 8 小题)小题) 9如图,已知函数 y=2x+b 与函数 y=kx3 的图象交于点 P,则不等式 kx32x+b 的解 集是 x4 考点:一次函数与一元一次不等式 专题:数形结合 分析:把 P 分别代入函数 y=2x+b 与函数 y=kx3 求出 k,b 的值,再求不等式 kx32x+b 的解集 解答:解:把 P(4,6)代入 y=2x+b 得,6=24+b 解得,b=14 把 P(4,6)代入 y=kx3 解得,k= 把 b=14,k=代入 kx32x+b 得, x32x14 解得,x4 故答案为:x4 点评:本题主要考查一次
19、函数和一元一次不等式,解题的关键是求出 k,b 的值求 解集10将直线 y=2x+1 平移后经过点(2,1) ,则平移后的直线解析式为 y=2x3 考点:一次函数图象与几何变换 分析:根据平移不改变 k 的值可设平移后直线的解析式为 y=2x+b,然后将点 (2,1)代入即可得出直线的函数解析式 解答:解:设平移后直线的解析式为 y=2x+b 把(2,1)代入直线解析式得 1=22+b, 解得 b=3 所以平移后直线的解析式为 y=2x3 故答案为:y=2x3 点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握 直线 y=kx+b(k0)平移时 k 的值不变是解题的关键11
20、在平面直角坐标系 xOy 中,已知一次函数 y=kx+b(k0)的图象过点 P(1,1) ,与 x 轴交于点 A,与 y 轴交于点 B,且 tanABO=3,那么点 A 的坐标是 (2,0)或 (4,0) 考点:待定系数法求一次函数解析式;锐角三角函数的定义 分析:已知 tanABO=3 就是已知一次函数的一次项系数是或根据函数经过点 P,利用待定系数法即可求得函数解析式,进而可得到 A 的坐标 解答:解:在 RtAOB 中,由 tanABO=3,可得 OA=3OB,则一次函数 y=kx+b 中 k= 一次函数 y=kx+b(k0)的图象过点 P(1,1) , 当 k=时,求可得 b=; k=
21、时,求可得 b= 即一次函数的解析式为 y=x+或 y=x+ 令 y=0,则 x=2 或 4, 点 A 的坐标是(2,0)或(4,0) 故答案为:(2,0)或(4,0) 点评:本题考查求一次函数的解析式及交点坐标12如图,直线 y=kx+b 过 A(1,2) 、B(2,0)两点,则 0kx+b2x 的解集为 2x1 考点:一次函数与一元一次不等式 专题:数形结合 分析:先确定直线 OA 的解析式为 y=2x,然后观察函数图象得到当2x1 时,y=kx+b 的图象在 x 轴上方且在直线 y=2x 的下方 解答:解:直线 OA 的解析式为 y=2x, 当2x1 时,0kx+b2x 故答案为:2x1
22、点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一 次函数 y=ax+b 的值大于(或小于)0 的自变量 x 的取值范围;从函数图象的角度看,就是 确定直线 y=kx+b 在 x 轴上(或下)方部分所有的点的横坐标所构成的集合13一次函数 y1=kx+b 与 y2=x+a 的图象如图,则 kx+bx+a 的解集是 x2 考点:一次函数与一元一次不等式 专题:整体思想分析:把 x=2 代入 y1=kx+b 与 y2=x+a,由 y1=y2得出=2,再求不等式的解集 解答:解:把 x=2 代入 y1=kx+b 得, y1=2k+b, 把 x=2 代入 y2=x+a 得, y2=
23、2+a, 由 y1=y2,得:2k+b=2+a,解得=2,解 kx+bx+a 得, (k1)xab, k0, k10,解集为:x,x2 故答案为:x2点评:本题主要考查一次函数和一元一次不等式,本题的关键是求出=2,把看作整体求解集14过点(1,7)的一条直线与 x 轴,y 轴分别相交于点 A,B,且与直线平行则在线段 AB 上,横、纵坐标都是整数的点的坐标是 (1,4) , (3,1) 考点:两条直线相交或平行问题分析:依据与直线平行设出直线 AB 的解析式 y=x+b;代入点(1,7)即可求得 b,然后求出与 x 轴的交点横坐标,列举才符合条件的 x 的取值,依 次代入即可解答:解:过点(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 中考 数学 复习 15 一次 函数 精练 答案 解析
限制150内