2021新人教版九年级数学教案范例.docx
《2021新人教版九年级数学教案范例.docx》由会员分享,可在线阅读,更多相关《2021新人教版九年级数学教案范例.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021新人教版九年级数学教案2021新人教版九年级数学教案1 配方法 教学内容 运用干脆开平方法,即依据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标 理解一元二次方程“降次”转化的数学思想,并能应用它解决一些详细问题. 提出问题,列出缺一次项的一元二次方程ax2+c=0,依据平方根的意义解出这个方程,然后学问迁移到解a(ex+f)2+c=0型的一元二次方程. 重难点关键 1.重点:运用开平方法解形如(x+m)2=n(n0)的方程;领悟降次转化的数学思想. 2.难点与关键:通过依据平方根的意义解形如x2=n,学问迁移到依据平方根的意义解形如(x+m)2=n(n0)
2、的方程. 教学过程 一、复习引入 学生活动:请同学们完成下列各题 问题1.填空 (1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2. 问题1:依据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 . 问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 二、探究新知 上面我们已经讲了x2=9,依据平方根的意义,干脆开平方得x=3,假如x换元为2t+1,即(2t+1)2=9,能否也用干脆开平方的方法求解呢? (学生分组探讨) 老师点
3、评:回答是确定的,把2t+1变为上面的x,那么2t+1=3 即2t+1=3,2t+1=-3 方程的两根为t1=1,t2=-2 例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1 分析:很清晰,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:(2)由已知,得:(x+3)2=2 干脆开平方,得:x+3= 即x+3=,x+3=- 所以,方程的两根x1=-3+,x2=-3- 例2.市政府安排2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.一年后人均住房面积就
4、应当是10+10x=10(1+x);二年后人均住房面积就应当是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4 (1+x)2=1.44 干脆开平方,得1+x=1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%. (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”
5、. 三、巩固练习 教材 练习. 四、应用拓展 例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应当是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2. 解:设该公司二、三月份营业额平均增长率为x. 那么1+(1+x)+(1+x)2=3.31 把(1+x)当成一个数,配方得: (1+x+)2=2.56,即(x+)2=2.56 x+=1.6,即x+=1.6,x+=-1.6 方程的根为x1=10%,x2=-3.1 因为增长率为正数, 所以该公司二、三月
6、份营业额平均增长率为10%. 五、归纳小结 本节课应驾驭: 由应用干脆开平方法解形如x2=p(p0),那么x=转化为应用干脆开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的.若p<0则方程无解 六、布置作业 1.教材 复习巩固1、2. 2021新人教版九年级数学教案2 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能娴熟应用它解决一些详细问题. 通过复习可干脆化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能干脆化成上面两种形式的一元二次方程的解题步骤. 重点 讲清干脆降次有困难,如x2+6x-16=0的一元二次方程
7、的解题步骤. 难点 将不行干脆降次解方程化为可干脆降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得 x=或mx+n=(p0). 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探究新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否干脆用上面前三个方程的解法呢?
8、问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征. 既然不能干脆降次解方程,那么,我们就应当设法把它转化为可干脆降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9 左边写成平方形式(x+3)2=25降次x+3=5即x+3=5或x+3=-5 解一次方程x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 新人 九年级 数学教案 范例
限制150内