《2011年全国数学建模大赛B组答案.pdf》由会员分享,可在线阅读,更多相关《2011年全国数学建模大赛B组答案.pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和 参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的
2、话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2011年_月 _日赛区评阅编号(山赛区组委会评阅前进行编号):1/212011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分 备注nnnnnnnnn全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2/21交巡警服务平台的设置和调度摘要“有困难找警察”,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管 理、交通管理、服务群众四大职能。为了更有效地贯彻实
3、施这些职能,需要在市区的 一些交通要道和重要部位设置交巡警服务平台。本文通过定性与定量分析、建立优化 模型,为交巡警服务平台的设置和调度提供参考。在第一个问题中,选择Dijkstra最短路径算法,利用Mat lab软件,先根据城区A交通路口的路线,求出表示各节点之间是否直接相连的0矩阵,然后根据城区A各节点坐标求出城区A各节点距离的权值矩阵(若两节点内无路则权值为无穷 大),接着把权值矩阵化为最短距离矩阵。根据需要变化最短距离矩阵,建立01规 划模型,訂标是使得出警时间最短(转化为出警距离最短计算),列出最优化方程, 最后利用Lingo软件进行求解,得出服务平台管辖路口节点以及堵截路口的最合理
4、方 案。综合考虑交巡警服务平台的发案率和出警时间,釆用动态加权平均的方法算出各 个交巡警服务平台的忙碌值。然后进行排名。取大于平均值的前九名,在城区A增 加25个服务平台时,综合这些节点周圉交通节点的密集程度,决定在A区增加三 个服务平台,分别为A20附近的节点90 (440.5, 381.5) , Al、A2和A3区域内的 节点67 (401, 359) , A4和A5区域内的节点56 (354,374)。在第二个问题中,首先对各城区现有平台设置的合理性进行评估。引入负荷距离 法、方差分析法,求得方差、偏差距离、单位平台处理案件数等参数,得出结论:城 区C、F服务平台的负担太大,而且警力配置
5、不均匀;城区D、E服务平台的地理分 布与发案的地理分布相差较大,不能及时赶到发案地点。再针对各个地区的不同情况 (人口、面积、发案率、平台分布疏密程度),经过科学分析,得出方案为:C区增 加节点305 (200, 487)、节点300 (206, 507)、节点207 (333, 511)为三个新 服务平台,F区增加节点506 (358, 195)、节点522 (371, 244)为两个新的服务 平台;D区中位于坐标为(70, 377)的服务平台D3移动到节点360 (76. 355) , E区中位于坐标为(90, 198)的服务平台E15移动到节点422 (74, 198)。最后通过 比较调
6、度前后的该城区的偏差距离、方差、单位平台处理按键数的变化,评佔解决方 案的合理性。在围堵犯罪嫌疑人的时候,釆用画树状图的方法,以三分钟为一个层次,结合概 率知识。无论他选择从哪条路出城,得出的圉堵方案都能在报警后六分钟之内抓住犯 罪嫌疑人。具体方案为:第一个三分钟出动服务平台A5、A6、A10、A15、A16、A2、A3、A4、A17、C8、C6、C4、C7和F1,分别派往节点5. 6、10、15、16、3、55、60、41、232、244、240、242、561进行围堵。第二个三分钟出动服务平台C2、C3、D1和D2,分别派往节点248、168、349、369进行围堵。如果第一个三分 钟时已
7、经围堵到了犯罪嫌疑人,那就不用出动第二个三分钟的四个平台,可以节省警力,而且能确保抓住犯罪嫌疑人。关键字:DijkstraDijkstra最短路径算法0-10-1规划负荷距离法方差树状图1/211问题的重述“有困难找警察”,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管 理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的 一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配 备基本相同。山于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交 巡警服务平台、分配各平台的管辖范圉、调度警务资源是警务部门面临的一个实际课 题。以给出的条件为例
8、,一共有五个问题需要解决。问题一:为各交巡警服务平台分配管辖范用,使其在所管辖的范围内出现突发事 件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。问题二:对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源, 对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个 路口,请给出该区交巡警服务平台警力合理的调度方案。问题三:根据现有交巡警服务半台的丄作量不均衡和有些地方出警时间过长的实 际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。问题四:针对全市(主城六区A. B, C, D, E, F)的具体情况,按照设置交 巡警
9、服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附 件)的合理性。如果有明显不合理,请给出解决方案。问题五:如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分 钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡 警服务平台警力资源的最佳用堵方案。2模型的假设(1)交通路口之间的路线都是直线;(2)每条路都是双向的;(3)每个交巡警服务平台的警力相当;(4)每个交巡警服务平台出警速度均为60km/h,不存在堵车等现象;(5)每个交巡警服务平台最多只能封锁一个路口;(6)犯罪嫌疑人对逃跑路线的选择是随机的;(7)犯罪嫌疑人逃跑时所行路线不会重复
10、;(8)犯罪嫌疑人最终口的为逃出该市,不会在城区内躲藏;(9)犯罪嫌疑人行车速度与警车速度一致,同为60km/h;(10)警方通讯时间忽略不计。3模型的符号说明符号意义节点,的忙碌值案发地理巫心的横坐标案发地理至心的纵坐标偏差距离从节点i到节点丿的权值B,c、D(n0城区A每两个节点的最短距离矩阵 参考附件2全市交通路口节点数据的第i个节点2/21节点0的横坐标qEfij GxG、rPh s2匕节点0的纵坐标城区A出入口节点与20个交巡警服务平台的最短距离矩阵 节点卩到节点的距离 平台地理重心的横坐标 平台地理重心的纵坐标节点i的出警时间城区各个服务平台案件处理数的方差节点i的案发率f城区A各
11、节点距离的权值矩阵平台i是否管辖节点丿(是则为1,否则为0)平台i是否负责堵截节点j(是则为1,否则为0)vv勺儿4.对问题的分析问题一中,我们首先明确最后得出的结果是城区A内20个交巡警服务平台与 交通路口的路线的对应关系。路线即两个路口节点之间的部分,所以我们将问题转化 为求各交巡警服务平台与路口节点的对应关系, 则服务平台管理从平台到该节点的最 短路径。 对Matlab对原始数据进行处理,用传统的Dijkstra最短路径算法求出城区A每两个路口节点的最短路径的距离。然后运用线性0-1规划模型,列出优化方程,用Lingo软件进行求解。问题二中,可以参考对问题一的分析,最后得出结果应为城区A
12、内20个交巡警 服务平台与13个出入市区的路口的对应关系。由于一个平台的警力最多封锁一个路 口,也就是每个路口必须指派一个平台的警力,属于指派问题,可以用匈牙利算法解决。匈牙利算法是01整数规划的特殊形式,所以可以列出优化方程用Lingo软件求 解。问题三中,经过统计各个交警服务平台的工作量和岀警时间,可以看出有的服 务平台的工作量比较大,而有的服务平台出警时间过长。为了有一个统一的评价,我 们对工作量和出警时间做了动态加权平均,建立出综合评价模型。然后对服务平台排 名,排在前儿名的就是工作量和出警时间相对较大和较长的。所以我们就应该在这些 服务平台周围增设服务平台。问题四中,从三个角度评估平
13、台分布的合理性。第一个角度考虑到警察肩负着刑事执法、治安管理、交通管理、服务群众四大 职能,希望服务平台尽量与相应案发地点的距离达到最小。这里我们参考负荷距离 法,引入“平台地理重心”和“案发地理重心”两个自定义概念,两者分别代表平台 分布位置与案发地点分布位置,以这两个重心之间的距离(称为“偏差距离”)为评 价标准,距离越小,则该地的平台分布越合理。分别求出六城区的偏差距离,并结合 各城区的面积与人口,进行讨论、评估。第二个角度通过求解每一个城区各个服务平台案件处理数的方差,然后比较各 城区之间的方差,方差越大表示该区警力分配越悬殊,以此评佔服务平台分布的合理 性。第三个角度简单地比较各城区
14、单位平台处理案件数,然后判断那些城区警力资 源紧张,需要增设服务平台。最后综合以上三个角度,作出相应的对策。5.模型的建立与求解求解的过程分为三部分。第一部分是对原始数据进行处理,作出求解时可以直接使用的数据表格。3/21第二部分是针对问题的分析建立模型,得出优化方程。第三部分利用软件对模型进行求解,得出最终结果。5 5 1 1问题一5.1.1数据的处理首先从附件2提取三部分的数据:1、城区A各路口节点(共92个)横纵坐标;2、涉及城区A路口节点的路线;3、20个交巡警服务平台对应的路口节点标号。根据以上数据,根据92个路口节点的横纵坐标,制作每两个节点之间距离的矩 阵。如果两节点之间没有路可
15、以贯通则用oc表示,得出矩阵W。心为矩阵W中的元 素,乙为节点i到节点j的距离,则有:厶,d,j = s,d,j = s,若i与j直接相连若i与j不直接相连若i = j0,将该赋权图的权值矩阵W输入,按照Dijkstra方法,反复使用迭代公式: 畔)=minj,铲)+d舁),就可以得到最终结果D o D(n)即为最短距离矩阵,每个数值都代表两点之间 最短路径的距离。这个过程山Matlab软件实现,具体算法参考附录1然后得出服务 平台与城区A各路线节点的对应最短距离矩阵Do512模型的建立口标为让交巡警从服务平台到每一个路口节点的总距离最小,然后还要满足每个 结点只需要一个交巡警服务平台负责。运
16、用线性0-1规划模型,如果服务平台位于i的交巡警负责点,则记为1,否则为0.再结合5. 1.1中得到的最短距离矩阵D,可以得出如下数学表达式:20209292讪=工工Qxs.t20 xij=.j = 12 3;/=i(2)Xij =0或,i,j =4/21(3)根据题意,交巡警服务平台所管辖的范圉内出现突发事件时,尽量能在3分钟内 有交巡警(警车的时速为60km/h)到达事发地,那么当事发地点利服务平台的距离 在:60 x = 3千米60以内的情况下才可以满足条件。乂知地图距离和实际距离的比例是1:100000,即1亳 米对应100米,则有:D(i, j)xx(ij) 320- -囹 300
17、280- - r rr rr rr r一260200250300Xmm350400450图1A区的交通节点与平台设置示意图由图1可知,我们可将排名靠钱的点分为儿个区域,A20与其所管辖的范围为 第一个区域,Al、A2和A3及其他们管辖范围为第二个区域,A4和A5及其管辖范 围为第三个区域,A15为第四个区域,A7为第五个区域,A13为地六个区域。再综合来看A15虽然排名靠前,但由于它管辖的区域节点数太少,而且发案率 比较低,所有在其周圉增加服务平台成本高。A7、和A13的排名比较靠后,管辖的 范围也不是很大,所以决定也不再在这两个区域增加平台。所以为了尽量减少成本, 而且使忙碌值尽量小,所以决
18、定只在A区增加三个平台最好。(2)确定增加平台的位置8/21要确定增加的平台的位置,我们采用重心法。重心法是一种选择销售中心位置,从而使销售成本降低的方法。它把销售成 本看成运输距离和运输数量的线形函数。此种方法利用地图确定各点的位置,并 将一坐标重叠在地图上确定各点的位置。这里采用这种方法给交巡警服务平台选 址。这里用A20管辖的第一个区域为例,将20, 84, 85, 86, 87, 88, 89, 90,91, 92的节点的横纵坐标(Da.,Dn.)以及案发率(岭),使用公式:(9)(10)可以得出重点坐标(CX,CV)为(443.287, 385.1261 ),同理可得另外两个区域的
19、重点为:(400.0391, 351.3574)、(360.6503, 377.5613)。然后我们再在途中寻找离这三个重心较近且能分担工作量和出警时间的交通节 点,即为我们要求的增加的平台的位置A20附近的节点90 (440.5, 381.5) , A1、A2和A3区域内的节点67(401, 359) , A4和A5区域内的节点56 (354, 374)。5.4问题四541负荷距离法分析5.4.1.1模型的引入首先讲述负荷距离法的基本思想。单一设施选址中要用到多种分析方法:定性与定量分析方法,以即将定量与定性 分析相结合的选址度量法等方法。负荷距离法就是一种单一设施选址的方法。负荷 距离法(
20、load-distancemethod)的目标是在若干个候选方案中,选定一个目标方案, 他可以使总负荷(货物.人或其他)移动的距离最小。我们首先定义“平台地理重心”,它是一个城区所有交巡警服务平台所在节点的 横、纵坐标分别取其平均值得到的一个坐标,它代表该城区服务平台的平均位置。然后我们参考负荷距离法以及加权平均法,定义“案发地理重心”o在一个城区 中,以各个路线节点的案发率为权数,对该城区所有路线节点的横.纵坐标进行加权 平均,得到一个坐标,它代表该城区发案的平均位置。最后我们求得城区内平台地理重心与案发地理重心的绝对距离,以该距离的大小 评价现有各城区交巡警服务平台设置方案的合理性。5.4
21、.1.2模型的建立与求解对于任意一个城区内任意一路线节点9Q = 1,2,.,582),它的重点坐标为(C,C,.)。直接引用公式(9)、(10) o其中匕为9节点的案发率,所求得的坐标(C*,C,)为9/21案发地理重心。对于一个共有n个服务平台的城区内,平台节点$(i=l.n),它的重点坐标为GO(11)Gr= n所求得的坐标为平台地理重心。各区的偏差距离 =yB八(12)JGCJ+GCJ .根据上述计算方法,可以得出如下表格:表5各城区平台地理重心与案发地理重心分布情况城区平台地理重心案发地理重心偏差距离G,ABCDEF341.40150. 31269. 4761.00187. 5738
22、8. 59Gv344. 4096. 44438. 82353. 33206. 33272. 91352. 01154.31257. 5172. 36174. 54379. 88348. 43101. 36442. 2933&42207.35267.1911. 356. 3512.4518. 7513. 0610. 425.4.1.3模型的评价根据表格,理论上时希望所有的服务平台都向特定的方向(从平台地理重心到案 发地理重心的方向)都移动相应的偏差距离。但是山于实际再该处不一定有节点,而 且落实到局部不一定适用。该模型给移动平台的方向与距离提供一定的参考。5.4.2城区内各服务平台案件处理数方差
23、的分析5.421模型的建立在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变 量离其期望值的距离。在概率论和统计学中,一个随机变量的方差描述的是它的离散 程度,也就是该变量离其期望值的距离。首先明确IJ标是求每一个城区各个服务平台案件处理数的方差,并把它们的方差 进行比较,对现有交巡警服务平台设置方案的合理性进行评价。这里以城区A为 例:参考城区A各交巡警平台的管辖范围(表1),将每个服务平台(A1-A20)平 均每日处理案件总数IJ作出统计,结果如表6所示。表6城区A各交巡警服务平台每日处理案件数量平均每日处理案件数量交巡警平台序号A110.310/21A2A3A4A5A
24、6A7A8A9A10AllA12A13A14A15A16A17A18A19A209. 15.66.69.72.59.658.21.64.648.52.54.855.36. 13.411. 5然后求出所有服务平台平均每日处理案件总数LI的方差,结果为:7.8185o用同样的方法得出城区BF各个服务平台案件处理数的方差得出如下表表7各城区服务平台案件处理数的方差7.81855.4.2.1模型的评价13.532530.328811.346716.886424.2802这里所求的城区各个服务平台案件处理数的方差,它代表一个城区内所有服务平 台处理案件数LI的离散程度,这个方差值越大,则代表这个城区的警
25、力分配不均衡, 应该进行调配。如图我们看到城区C、F的S?值很大,说明这两个城区有的服务平台过于繁忙,有的服务平台则有资源闲置的情况发生。应该对这些地区的服务平台进行调整。5.4.3城区情况综合分析5.4.3.1模型的建立与评价参考附件2全市交通路口节点数据与六城区的基本数据,统计各区人口密度、平 台个数、总案发率并求出单位平台处理案件数,作出联合表格如下:表8各城区案发情况全市六个城区各区平台个数单位人口密度发案率单位平台处理案件数B82.7272727270.20388349566.48.311/21CDEF17915110.2217194570. 1906005220. 17592592
26、60.193430657187.267.8119.4109.211. 011764717.5333333337. 969.927272727根据表格数据我们得知,一个地区的发案率与该地人口密度呈正相关关系。而 发案率高的城区我们应该分配更多的警力。山各城区单位平台处理案件数我们可以得 知C. F城区的服务平台工作量过大,而A城区则偏小,可以将A城区一部分警力 分配到警力不足的城区。5.4.4解决方案及其评价根据5.4.1、Z5.4.2以及5.4.3的分析,可以看出C区、F区服务平台负担过重, 并且存在警力分配不均衡的现象,应该相应增加平台个数进行调整:D区、E区的偏 差距离过大,应该相应调整服
27、务平台的位置,使偏差距离降低。544增加平台的方案这里参考问题三在A区增设点解决方法与附录1中全市六区交通网络与平台设 置的示意图,并遵循以下两个原则:1尽量在服务平台分布比较稀疏的区域;2尽量 在负担大的服务平台附近的区域。 最后我们定出C区增加节点305 (200, 487)、 节 点300 (206, 507)、 节点207 (333,511 )三个服务平台,F区增加节点506 (358, 195)、节点522 (371, 244)两个服务平台。我们用各服务平台处理案件数目的平均数来评价这个解决方案。服务平台增加后,C区与F区单位平台处理案件数分别为9.36、&4,比原来的11.0117
28、6471.9. 927272727要小,更接近平均水平,有效减轻服务平台负担。而C区与F区各个服务平台案件处理数的方差变为17.5594、12.1292,相比原来的30.3288、24. 2802有显著的降低。也就是说增加了以上服务平台后,城区C、F警力 分配更加平均,平台负担不均衡的现象得到改善。5.44.2移动平台的方案根据偏差的距离与方向,我们把相应的点都移动,结合实际情况,参考与附录1中全市六区交通网络与平台设置的示意图,把平台设在服务平台稀疏的区域。最后决定:D区中位于(70,377)的服务平台D3移动到节点360 (76. 355) , E区中位于(90, 198)的服务平台E15
29、移动到节点442 (74, 198) 移动后,D区与E区的偏差距离从18.75. 13.06分别变为16.43、12,说明服务 平台更接近于案发的地点。5 5 5 5问题五551模型的建立问题五是一个围堵问题,各节点间形成复杂的道路网络,还要考虑时间问题。 所以我们决定用树状图的方法,再加上各个节点到P32的距离,就可以得出最佳围堵 方案。我们利用三分钟时段来考虑我们圉堵的方案。我们釆用树状图来描述犯罪嫌疑人 的逃跑路线。我们还要结合犯罪嫌疑人的时间来看。我们用树状图表示出犯罪嫌疑人在A区、C区、D区和F区的逃跑路线示意图。 见图2和图三。说明:(1)图中的直线长度只表示方向,不表示路程的长度
30、,具体的按到P32的 最短距离见附录4.(2) III于犯罪嫌疑人逃到D区和F区的路线比较少,就把他们两的路线示意图12/21融合到A区的图中区了。图2在A区D区和F区可能逃跑的路线13/21图3在C区里可能逃跑的路线第一、当犯罪嫌疑人先逃跑三分钟他途经的距离为3kmo他可能已经经过的点为7、33、31、30、47、34、8、46、9、45、36、48。三分钟后接到命令,立即进行道 路封锁和圉堵,每个平台封锁一个节点,三分钟时可以立即封锁的路口为交巡警服务 平台(A5, 5)、(A6,6)、(A10, 10)、(A15, 15)、(A16, 16)。这些路 线围堵到犯罪嫌疑人的概率为0.50。
31、而且此时犯罪嫌疑人从A区逃到E区和B区的 路线全都被封锁,大大缩小了搜捕范围。我们已经封锁了的点在树状图中就不用在考 虑了。 因为服务平台到达交通节点的时间为三分钟左右,所以我们就以三分钟为一个 时间段考虑嫌疑犯逃跑的距离。第二、 当犯罪嫌疑人逃跑六分钟时他途经的距离为6kmo可能到达的节点为图 中的55、61、237等。在A区交巡警在这三分中内可以封锁的交通节点为A区(A2: 3)、(A3: 55)、(A4: 60)、(A17: 41) , C区(C8: 232)、(C6:244)和D区(D1: 349)。此时围堵到犯罪嫌疑人的概率为0.62。同时还有正在赶 去围堵的服务平台有A区的(A1,
32、 40)、(A19: 4) , C区的(C2: 248).(C3: 168)、(C4: 240)、(C5: 273) (C7: 242)、,D区的(D2: 369) , F区的(F1: 561) o第三.当犯罪嫌疑人逃跑九分钟时他途经的距离为9kmo可能达到的节点为图 中的38、39、14/21244等。 在A区交巡警能在三分钟到六分钟成功封锁的交通节点为(A1: 40)、(A19: 4) ,C区的(C2: 248)(C3: 168)、(C4: 240),(D2: 369)和(F1: 561)。此时犯罪嫌疑人从A区逃到D区和F区的路线也全都 封锁了,范围就更小了。而且此时在A区内所有可能的逃跑
33、路都已经成功围堵。此 时成功围堵到的概率为1.5.5.2方案的改进对于上面的方案因为存在随机性。因为各个服务平台和发出命令的总部是一直保 持联通,可以随时知道是否抓到了犯罪嫌疑人。所以有的服务平台离封锁节点近的,且离P32这个点比较远时,就可以在刚开始围堵的三分钟不出动,只是在服务平台 待命,如果三分钟后没有围堵到犯罪嫌疑人,这些警力再出动。第一个三分钟出动的服务平台(A5: 5)、(A6: 6)、(A10: 10)、(A15:15)、(A16: 16)、(A2: 3)、(A3: 55)、(A4: 60)、(A17: 41 )、(C8: 232)、(C6: 244)、(C4: 240)、(C7
34、: 242)和(F1: 561)。第二个三分钟出动的服务平台(C2: 248)、(C3: 168)、(D1: 349)和(D2:369)。6.模型评价与优化在问题一中,无法使所有解都满足在3分钟内有交巡警(警车的时速为60km/h)到达事发地, 但是路径已经满足最短, 无法再进一步优化。 但是实际问题 中, 交巡警是在路段进行巡逻的,而不是固定在交巡警服务平台。我们可以让交巡警 尽量分散警力,形成警力网,一旦有一个地区发案,可以及时发现,并通知其他交巡 警赶来。在问题三中,权重的分配可以随着条件的变化而进行修正。在问题四中提出的负荷距离法,当两者重心相距十分近的时候,案发地点与服务 平台的距离
35、仍然有可能很大。 所以还要根据具体情况进行分析,这种方法的适用性必 须结合实际才可以使用。在问题五中,犯罪嫌疑人行车速度有可能回比出警速度更快,警方堵截会更加困 难,这个时候模型就需要作出调整。7.参考文献1韩中庚,数学建模方法及其应用M,北京:高等教育出版社,2005 韩中庚,数学建模竞赛一一获奖论文精选与点评,北京:科学出版社,20073汪小帆,李翔,陈关荣,复杂网络理论及其应用,北京:清华大学出版社,2006.44姜启源,数学模型(第二版),北京:高等教育出版社,19925王海英,图论算法及其MATLAB实现,北京:北京航空航天大学出版社,2010.26韩中庚,数学建模方法及其应用,北京
36、:高等教育出版社,2005.67谢金星,优化建模与LINDO/LINGO软件,北京:清华大学出版社,2005.78盛骤,谢式千,潘承毅,概率论与数理统计,北京:高等教育出版社,2008.68.附录:附录1求连通图最短距离矩算法阵的MATLAB实现$连通图中各定点最短距离的讣算15/21Function D = shortdf(W)$对于 W(i,j),若两顶点间存在弧,则为弧的权值,否则为 inf;当 i=j 时,W(i,j)=0n=length(W);D=W;m=l;while mD(i,m)+D(m,j)D(i, j)=D(izm) +D(mz j) ;% 距离进行更新endendendm
37、=m+1;endD;附录2问题一的lingo程序model:sets :node/192/:y;tp/120/;net(tpf node) :d,x;endsetsdata :d=. . .r!数据过多,省略不表。enddatamin=sum(net:d*x);for(net:bin(x);Qfor(node(i) :sum(net(jz i) :x(j,i)=1);end附录3问题二的lingo程序model:sets :tp/1.20/;ex/1.13/;net(ex,tp):x,d;endsetsdata :16/21d=!数据过多,省略不表。enddatamin=sum(net:x*d
38、);Qfor(net:bin(x);for (ex(i) :sum(tp(j) :x(i,j)=1); for(tp(i) :sum(ex(j) :x(j,i)1); end附录4 9分钟内到P32的距离节点7893031323334353645464748节点561516373分钟内3到6分钟17/21与32的距离11.401813.375517. 690317. 232711.704705. 09912.665421.93326. 93328. 641222. 67624. 20824. 3038与32的距离38. 768239. 074141.386333.015732. 0324950
39、51525355565961173232233234235236237245247节点2341028383940445457586063646566671712162282292306到9分钟43. 768247. 253551.061455. 362650. 476452.103959. 605253. 976953. 303846. 596857. 203451.695850. 460541.281740.914235.914256.121258.7397与32的距离85.879464.762987. 968761.881888. 904864.947361. 947379. 624976. 392662.153869.287161.787177. 426586.340685. 833680. 002683. 164987. 407676.267785.872489. 07489. 729378.067418/2123123824124224324424648856056169. 0566 64.198580. 328 74.4062 75. 0674 68.121265.4619 86.2355 64.0319 87. 96919/21
限制150内