高一数学下册教案优质.docx
《高一数学下册教案优质.docx》由会员分享,可在线阅读,更多相关《高一数学下册教案优质.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学下册教案高一数学下册教案1 教学目标: 1、结合实际问题情景,理解分层抽样的必要性和重要性; 2、学会用分层抽样的方法从总体中抽取样本; 3、并对简洁随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。 教学重点: 通过实例理解分层抽样的方法。 教学难点: 分层抽样的步骤。 教学过程: 一、问题情境 1、复习简洁随机抽样、系统抽样的概念、特征以及适用范围。 2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力状况,从中抽取容量为的样本,怎样抽取较为合理? 二、学生活动 能否用简洁随机抽样或系统抽样进行抽样,为什么? 指出由于不同年级的学生视力状况有肯定的差异,用
2、简洁随机抽样或系统抽样进行抽样不能精确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要留意总体中个体的层次性。 由于样本的容量与总体的个体数的比为1002500=125, 所以在各年级抽取的个体数依次是。即40,32,28。 三、建构数学 1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的状况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。 说明: 分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的
3、; 由于分层抽样充分利用了我们所驾驭的信息,使样本具有较好的代表性,而且在各层抽样时可以依据详细状况实行不同的抽样方法,所以分层抽样在实践中有着特别广泛的应用。 高一数学下册教案2 教学过程 (一)创设情景,揭示课题 1、复习初中所学函数的概念,强调函数的模型化思想; 2、阅读课本引例,体会函数是描述客观事物改变规律的数学模型的思想: (1)炮弹的射高与时间的改变关系问题; (2)南极臭氧空洞面积与时间的改变关系问题; (3)“八五”安排以来我国城镇居民的恩格尔系数与时间的改变关系问题. 3、分析、归纳以上三个实例,它们有什么共同点; 4、引导学生应用集合与对应的语言描述各个实例中两个变量间的
4、依靠关系; 5、依据初中所学函数的概念,推断各个实例中的两个变量间的关系是否是函数关系. (二)研探新知 1、函数的有关概念 (1)函数的概念: 设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数(function). 记作:y=f(x),xA. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域(range). 留意: “y=f(x)”是函数符号,可以用随意的字母表示,如“y=g(x)”;
5、 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. (2)构成函数的三要素是什么? 定义域、对应关系和值域 (3)区间的概念 区间的分类:开区间、闭区间、半开半闭区间; 无穷区间; 区间的数轴表示. (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么? 通过三个已知的函数:y=ax+b(a0) y=ax2+bx+c(a0) y=(k0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会. 师:归纳总结 (三)质疑答辩,排难解惑,发展思维。 1、如何求函数的定义域 例1:已知函数f(x)=+ (1)求函数的定义域; (2)求f(-3),f()的值;
6、(3)当a>0时,求f(a),f(a-1)的值. 分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.假如只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式. 例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域. 分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.< p=> 所以s=(40-x)x(0<x<40)< p=> 引导学生小结几类函数的定义域: (1)假如f(x)是整式,那么函
7、数的定义域是实数集R. 2)假如f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合. (3)假如f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)假如f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集) 高一数学下册教案3 一、教学目标: 驾驭向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 二、教学重点: 向量的性质及相关学问的综合应用。 三、教学过程: (一)主要学问: 1、驾驭向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 下册 教案 优质
限制150内