高一数学的公开课教案例文.docx
《高一数学的公开课教案例文.docx》由会员分享,可在线阅读,更多相关《高一数学的公开课教案例文.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学的公开课教案高一数学的公开课教案1 教学目标: 驾驭二倍角的正弦、余弦、正切公式,能用上述公式进行简洁的求值、化简、恒等证明;引导学生发觉数学规律,让学生体会化归这一基本数学思想在发觉中所起的作用,培育学生的创新意识. 教学重点: 二倍角公式的推导及简洁应用. 教学难点: 理解倍角公式,用单角的三角函数表示二倍角的三角函数. 教学过程: .课题导入 前一段时间,我们共同探讨了和角公式、差角公式,今日,我们接着探讨一下二倍角公式.我们知道,和角公式与差角公式是可以相互化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推. 先回忆和角公式 si
2、n(+)=sincos+cossin 当=时,sin(+)=sin2=2sincos 即:sin2=2sincos(S2) cos(+)=coscos-sinsin 当=时cos(+)=cos2=cos2-sin2 即:cos2=cos2-sin2(C2) tan(+)=tan+tan1-tantan 当=时,tan2=2tan1-tan2 .讲授新课 同学们推证所得结果是否与此结果相同呢?其中由于sin2+cos2=1,公式C2还可以变形为:cos2=2cos2-1或:cos2=1-2sin2 同学们是否也考虑到了呢? 另外运用这些公式要留意如下几点: (1)公式S2、C2中,角可以是随意角
3、;但公式T2只有当2 +k及4 +k2 (kZ)时才成立,否则不成立(因为当=2 +k,kZ时,tan的值不存在;当=4 +k2 ,kZ时tan2的值不存在). 当=2 +k(kZ)时,虽然tan的值不存在,但tan2的值是存在的,这时求tan2的值可利用诱导公式: 即:tan2=tan2(2 +k)=tan(+2k)=tan=0 (2)在一般状况下,sin22sin 例如:sin3 =322sin6 =1;只有在一些特别的状况下,才有可能成立当且仅当=k(kZ)时,sin2=2sin=0成立. 同样在一般状况下cos22costan22tan (3)倍角公式不仅可运用于将2作为的2倍的状况,
4、还可以运用于诸如将4作为2的2倍,将作为 2 的2倍,将 2 作为 4 的2倍,将3作为 32 的2倍等等. 高一数学的公开课教案2 教学目标 1.了解函数的单调性和奇偶性的概念,驾驭有关证明和推断的基本方法. (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念. (2)能从数和形两个角度相识单调性和奇偶性. (3)能借助图象推断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义推断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程. 2.通过函数单调性的证明,提高学生在代数方面的推理论证实力;通过函数奇偶性概念的形成过程,培育学生的视察,归纳,抽象的实力,
5、同时渗透数形结合,从特别到一般的数学思想. 3.通过对函数单调性和奇偶性的理论探讨,增学生对数学美的体验,培育乐于求索的精神,形成科学,严谨的探讨看法. 教学建议 一、学问结构 (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系. (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像. 二、重点难点分析 (1)本节教学的重点是函数的单调性,奇偶性概念的形成与相识.教学的难点是领悟函数单调性, 奇偶性的本质,驾驭单调性的证明. (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从
6、图象上直观视察图象的上升与下降,而现在要求把它上升到理论的高度,用精确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的实力是比较弱的,很多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点. 三、教法建议 (1)函数单调性概念引入时,可以先从学生熟识的一次函数,二次函数.反比例函数图象动身,回忆图象的增减性,从这点感性相识动身,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以
7、从点的坐标的角度,也可以从自变量与函数值的关系的角度来说明,引导学生发觉自变量与函数值的的改变规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,随意,都有)的理解与必要性的相识就可以融入其中,将概念的形成与相识结合起来. (2)函数单调性证明的步骤是严格规定的,要让学生根据步骤去做,就必需让他们明确每一步的必要性,每一步的目的,特殊是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律. 函数的奇偶性概念引入时,可设计一个课件,以 的图象为例,让自变量互为相反数,视察对应的函数值的改变规律,先
8、从详细数值 起先,渐渐让 在数轴上动起来,视察随意性,再让学生把看到的用数学表达式写出来.经验了这样的过程,再得到等式 时,就比较简单体会它代表的是多数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发觉定义域的对称性,同时还可以借助图象(如 )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件. 高一数学的公开课教案3 教学目标 1.驾驭对数函数的概念,图象和性质,且在驾驭性质的基础上能进行初步的应用. (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 公开 教案 例文
限制150内