沪科版七年级上册数学教案精品.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《沪科版七年级上册数学教案精品.docx》由会员分享,可在线阅读,更多相关《沪科版七年级上册数学教案精品.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版七年级上册数学教案沪科版七年级上册数学教案1 一、素养教化目标 (一)学问教学点 1.驾驭的三要素,能正确画出. 2.能将已知数在上表示出来,能说出上已知点所表示的数. (二)实力训练点 1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识. 2.对学生渗透数形结合的思想方法. (三)德育渗透点 使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点. (四)美育渗透点 通过画,给学生以图形美的教化,同时由于数形的结合,学生会得到和谐美的享受. 二、学法引导 1.教学方法:依据老师为主导,学生为主体的原则,始终贯穿“激发情趣手脑并用启发诱导反馈矫正”的教学方法
2、. 2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习. 三、重点、难点、疑点及解决方法 1.重点:正确驾驭画法和用上的点表示有理数. 2.难点:有理数和上的点的对应关系。 四、课时支配 1课时 五、教具学具打算 电脑、投影仪、自制胶片. 六、师生互动活动设计 师生同步画,学生概括三要素,师出示投影,生动手动脑练习 七、教学步骤 (一)创设情境,引入新课 师:大家学问温度计的用途是什么? 生:温度计可以测量温度 (出示投影1) 三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度. 师:三个温度计所表示的温度是多少? 生:2,-5,0
3、. 我们能否用类似温度计的图形表示有理数呢? 这种表示数的图形就是今日我们要学的内容(板书课题). 从温度计用标有读数的刻度来表示温度的凹凸这个事实动身,引出本节课所要学的内容.再从温度计这个实物形象抽象出来探讨.既激发了学生的学习爱好,又使学生受到把实际问题抽象成数学问题的训练,培育了用数学的意识. (二)探究新知,讲授新课 1.的画法 与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,详细做法如下: 第一步:画直线定原点 原点表示0(相当于温度计上的0). 其次步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上以上为正,0
4、以下为负). 第三步:选择适当的长度为单位长度 (相当于温度计上每1占1小格的长度). 老师边讲解边示范,学生跟着一起画图.培育学生动手、动脑和实际操作实力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法. 让学生视察画好的直线,思索以下问题: (出示投影1) (1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)表示+2的点在什么位置?表示-1的点在什么位置? (4)原点向右0.5个单位长度的A点表示什么数?原点向左 个单位长度的B点表示什么数? 依据老师画图的步骤,学生思索在一条水平的直线上都画出什么?然后归纳出的定义. 学
5、生活动:同学们思索,并要求同桌相互叙述,相互订正补充,语句通顺后举手回答.大家思索打算更正或补充. 通过“视察类比思索概括表达”呈现学问的形成是从感性相识上升到理性相识的过程,让学生在获得学问的过程中,领悟数学思想和思维方法,并有意识地训练学生归纳概括和口头表达实力. 老师依据学生回答赐予确定或否定,订正后板书. 2.的定义:规定了原点、正方向和单位长度的直线叫做. 向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不行,相识和驾驭推断一条直线是不是的依据. 学生活动:同桌之间、前后桌之间探讨.使学
6、生从直观相识上升到理性相识. 3.尝试反馈,巩固练习 请大家回答下列问题: (出示投影2) (1)有人说一条直线是一条,对不对?为什么? (2)下列所画对不对?假如不对,指出错在哪里? 学生活动:学生思索,不准探讨,想好后举手回答. 让其他学生对其回答进行评判,对确有疑问的题目,老师赐予讲解. 此组练习的目的是巩固的概念. 答案:(2)缺原点,缺正方向,不是射线而是直线,缺单位长度,提示学生留意在同一数轮上必需用同一单位长度进行度量.是,同时为学习平面直角坐标系打基础. 4.有理数与上点的关系 通过刚才的学习我们知道全部的有理数都可以用上的点来表示. 例1 画一条,并画出表示下列各数的点: 1
7、,5,0,-2.5, . 学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.老师巡回指导,发觉问题刚好订正. 让学生动手自己画,有助于培育学生实际操作实力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解. (出示投影4) 例2 指出上 A、B、C、D、E各点分别表示什么数? 先让学生思索一会,然后学生举手回答 解:A表示-3;B表示 ; C表示3;D表示 ;E表 . 例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想. 5.尝试反馈
8、,巩固练习 (出示投影5) 说出下面上A、B、C、D、O、M各点表示什么数? 将-3, ,1.5,-6, ,2.25,-5,1 各数用上的点表示出来. 题由点读数练习,题由数找点练习,进一步巩固加深本节所学的内容. (三)归纳小结 师:是特别重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的. 驾驭三要素,正确地画出,提示同学们,全部的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再探讨. 八、随堂练习 1.推断题 (1)直线就是( ) (2)是直
9、线( ) (3)任何一个有理数都可以用上的点来表示() (4)上到原点距离等于3的点所表示的数是+3( ) (5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( ) 2.画一条数轮,并画出表示下列各数的点 ,-5,0,+3.2,-1.4 九、布置作业 (-)必做题:课本第56页1、2. (二)选做题:课本第56页及第57页B组l. (三)思索题: 在数轮上距原点3个单位长度的点表示的数是_ 在数轮上表示-6的点在原点的_侧,距离原点_个单位长度,表示+6的点在原点的_侧,距离原点_个单位长度. 由于学生在学问、技能、实力方面发展不尽相同,所以分层次地布置作业 ,兼顾学习有困
10、难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能. 十、板书设计 随堂练习答案 1. 2.略 作业 答案 (一)必做题 1.(1)依次是 (2)依次是 2.依次是 (二)选做题: 3.略 B组1.(1)-6,(2)-1,(3)3;(4)0 (三)思索题: 左,6,右,6 探究活动 (1)在上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来; (2)写出比-4大但不大于2的全部整数. 分析:画时,的三要素:原点、正方向、单位长度缺一不行. (1)在上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别
11、在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了; (2)在上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2. 解:(1)上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5. 由图看出: -4.5<-3<3<4.5 (2)在上画出大于-4但不大于2的数的范围. 由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2. 点评:利用,数形结合,是解这一类问题的好方法. 沪科版七年级上册数学教案2 教学目标 1.了解的概念和的画法,驾驭的三要素; 2.会用上的
12、点表示有理数,会利用比较有理数的大小; 3.使学生初步了解数形结合的思想方法,培育学生相互联系的观点。 教学建议 一、重点、难点分析 本节的重点是初步理解数形结合的思想方法,正确驾驭画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不行,二是这三个要素都是规定的。另外应当明确的是,全部的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步驾驭用解决问题的方法,为今后充分利用“”这个工具打下基础. 二、学问结构 有了,数和形得到了初步结合,这有利于对数学问题的探讨,数形结合是
13、理解数学、学好数学的重要思想方法,本课学问要点如下表: 定义 三要素 应用 数形结合 规定了原点、正方向、单位长度的直线叫 原 点 正方向 单位长度 帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数 比较有理数大小,上右边的数总比左边的数要大 在理解并驾驭概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道全部的有理数都可以用上的点表示,会利用比较有理数的大小。 三、教法建议 小学里曾学过利用射线上的点来表示数,为此我们可引导学生思索:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单
14、位长度)的直线,这三个要素是推断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上须要,一般水平放置的,规定从原点向右为正方向。要留意原点位置选择的随意性。 关于有理数与上的点的对应关系,应当明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。依据几个有理数在上所对应的点的相互位置关系,应当能够推断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。 四、的相关学问点 1.的概念 (1)规定了原点、正方向和单位长度的直线叫做. 这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不行.二是这三个要素都是规定的. (2)能形象地表示数,
15、全部的有理数都可用上的点表示,但上的点所表示的数并不都是有理数. 以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地说明相反数,帮助理解肯定值的意义,还可以比较有理数的大小.因此,应重视对的学习. 2.的画法 (1)画直线(一般画成水平的)、定原点,标出原点“O”. (2)取原点向右方向为正方向,并标出箭头. (3)选适当的长度作为单位长度,并标出,-3,-2,-1,1,2,3各点。详细如下图。 (4)标注数字时,负数的次序不能写错,如下图。 3.用比较有理数的大小 (1)在上表示的两数,右边的数总比左边的数大。
16、 (2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。 (3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。 五、定义的理解 1.规定了原点、正方向和单位长度的直线叫做,如图1所示. 2.全部的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2). A点表示-4; B点表示-1.5; O点表示0; C点表示3.5; D点表示6. 从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道: 正数都大于0,负数都小于0,正数大于一切负数. 因为正数都大于0,反过来,大于0的数都是正数
17、,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。 同理, ,表示 是负数;反之 是负数也可以表示为 。 3.正常见几种错误 1)没有方向 2)没有原点 3)单位长度不统一 教学设计示例 (一) 教学目标 1.使学生正确理解的意义,驾驭的三要素; 2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来; 3.使学生初步理解数形结合的思想方法. 教学重点和难点 重点:初步理解数形结合的思想方法,正确驾驭画法和用上的点表示有理数. 难点:正确理解有理数与上点的对应关系. 课堂教学过程 设计 一、从学生原有认知结构提出问题 1.小学里曾用“射线”上的点来表示数,你
18、能在射线上表示出1和2吗? 2.用“射线”能不能表示有理数?为什么? 3.你认为把“射线”做怎样的改动,才能用来表示有理数呢? 待学生回答后,老师指出,这就是我们本节课所要学习的内容. 二、讲授新课 让学生视察挂图放大的温度计,同时老师赐予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10;在0下5个刻度,表示-5. 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.详细方法如下(边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪科版七 年级 上册 数学教案 精品
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内