七年级数学《有理数》教案范本.docx
《七年级数学《有理数》教案范本.docx》由会员分享,可在线阅读,更多相关《七年级数学《有理数》教案范本.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级数学有理数教案有理数教案1 一、素养教化目标 (一)学问教学点 1.理解有理数乘方的意义. 2.驾驭有理数乘方的运算. (二)实力训练点 1.培育学生视察、分析、比较、归纳、概括的实力. 2.渗透转化思想. (三)德育渗透点:培育学生勤思、仔细和勇于探究的精神. (四)美育渗透点 把记成,显示了乘方符号的简洁美. 二、学法引导 1.教学方法:引导探究法,尝试指导,充分体现学生主体地位. 2.学生学法:探究的性质练习巩固 三、重点、难点、疑点及解决方法 1.重点:运算. 2.难点:运算的符号法则. 3.疑点:乘方和幂的区分. 与的区分. 四、课时支配 1课时 五、教具学具打算 投影仪、自制
2、胶片. 六、师生互动活动设计 老师引导类比,学生探讨归纳乘方的概念,老师出示探究性练习,学生探讨归纳乘方的性质,老师出示巩固性练习,学生多种形式完成. 七、教学步骤 (一)创设情境,导入 新课 师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么? 生:可以记作,读作的四次方. 师:呢? 生:可以记作,读作的五次方. 师:(为正整数)呢? 生:可以记作,读作的次方. 师:很好!把个相乘,记作,既简洁又明确. 老师给学生创设问题情境,激励学生主动参加,大大调动了学生学习的主动性.同时,使学生相识到数学的发展是不断进行推广的,是由计算正
3、方形的面积得到的,是由计算正方体和体积得到的,而,是学生通过类推得到的. 师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明. 生:还可取负数和零.例如:000记,(-2)(-2)(-2)(-2)记作. 特别好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取随意有理数,这就是我们今日探讨的课题:(板书). 对于的范围,是在老师的引导下,学生主动动脑参加,并且依据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最终总结出可以取随意有理数. (二)探究新知,讲授新课 1.求个相同因数的积的运算,叫做乘方. 乘方的结果叫做幂,
4、相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取随意有理数,取正整数. 留意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂. 巩固练习(出示投影1) (1)在中,底数是_,指数是_,读作_或读作_; (2)在中,-2是_,4是_,读作_或读作_; (3)在中,底数是_,指数是_,读作_; (4)5,底数是_,指数是_. 此组练习是巩固乘方的有关概念,刚好反馈学生驾驭状况.(2)、(3)小题的区分表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通
5、常省略不写. 师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么? 学生活动:同学们思索,前后桌同学相互探讨沟通,然后举手回答. 生:到目前为止,已经学习过五种运算,它们是: 运算:加、减、乘、除、乘方; 运算结果:和、差、积、商、幂; 老师对学生的回答赐予评价并激励. 注意学生在认知过程中的思维.主动参加,通过学生探讨、归纳得出的学问,比老师的单独讲解要记得牢,同时也培育学生归纳、总结的实力. 师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明. 学生活动:学生主动思索,同桌相互探讨,并在练习本上举例. 通过学生主动动脑,主动参加
6、,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想. 2.练习:(出示投影2) 计算:1.(1)2, (2), (3), (4). 2.(1),. (2)-2,. 3.(1)0, (2), (3), (4). 学生活动:学生独立完成解题过程,请三个学生板演,老师巡回指导,待学生完成后,师生共同评价对错,并予以激励. 师:请同学们视察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系? 先让学生独立思索,老师边巡察边做适当提示.然后让学生探讨,老师加入某一小组. 生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零. 师:请同学
7、们接着视察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢? 学生活动:学生主动思索,同桌之间、前后桌之间相互探讨. 生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等. 师:请同学思索一个问题,任何一个数的偶次幂是什么数? 生:任何一个数的偶次幂是非负数. 师:你能把上述结论用数学符号表示吗? 生:(1)当时,(为正整数); (2)当 (3)当时,(为正整数); (4)(为正整数); (为正整数); (为正整数,为有理数). 老师把重点放在教学情境的设计上,通过学生自己探究,获得学问.老师要始终给学生创建发挥的机会,注意学生参加.学生通过特别问题归纳出一般性的结论,既训练学生归纳
8、总结的实力和口头表达的实力,又能使学生对法则记得牢,领悟的深刻. 有理数教案2 教学目标 1.理解有理数加法的意义,驾驭有理数加法法则中的符号法则和肯定值运算法则; 2.能依据有理数加法法则娴熟地进行有理数加法运算,弄清有理数加法与非负数加法的区分; 3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4.通过有理数加法法则及运算律在加法运算中的运用,培育学生的运算实力; 5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学学问来源于生活,并应用于生活。 教学建议 (一)重点、难点分析 本节教学的重点是依据法则娴熟进行运算。难
9、点是法则的理解。 (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。 (2)详细运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。 (3)假如是同号相加,取相同的符号,并把肯定值相加。假如是异号两数相加,应先判别肯定值的大小关系,假如肯定值相等,则和为0;假如肯定值不相等,则和的符号取肯定值较大的加数的符号,和的肯定值就是较大的肯定值与较小的肯定值的差。一个数与0相加,仍得这个数。 (二)学问结构 (三)教法建议 1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、肯定值等学问。 2.法则是规定的,而教材起先
10、部分的行程问题是为了说明加法法则的合理性。 3.应强调加法交换律“a+b=b+a”中字母a、b的随意性。 4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应当先细致视察式子的特点,深刻相识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。 5.可以给出一些类似“两数之和必大于任何一个加数”的推断题,以明确由于负数参加加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。 6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同始终线上两次运动的过程,让学生更好的理解有理数运算法则。 教学
11、设计示例 (第一课时) 教学目的 1.使学生理解有理数加法的意义,初步驾驭有理数加法法则,并能精确地进行运算. 2.通过运算,培育学生的运算实力. 教学重点与难点 重点:娴熟应用法则进行加法运算. 难点:法则的理解. 教学过程 (一)复习提问 1.有理数是怎么分类的? 2.有理数的肯定值是怎么定义的?一个有理数的肯定值的几何意义是什么? 3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明? -3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|. (二)引入新课 在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引
12、入负数之后,这些运算法则将是怎样的呢?我们先来学运算. (三)进行新课 (板书课题) 例1 如图所示,某人从原点0动身,假如第一次走了5米,其次次接着又走了3米,求两次行走后某人在什么地方? 两次行走后距原点0为8米,应当用加法. 为区分向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种状况: 1.同号两数相加 (1)某人向东走5米,再向东走3米,两次一共走了多少米? 这是求两次行走的路程的和. 5+3=8 用数轴表示如图 从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米. 可见,正数加正数,其和仍是正数,和的肯定值等于这两个加数的肯定值
13、的和. (2)某人向西走5米,再向西走3米,两次一共向东走了多少米? 明显,两次一共向西走了8米 (-5)+(-3)=-8 用数轴表示如图 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米. 可见,负数加负数,其和仍是负数,和的肯定值也是等于两个加数的肯定值的和. 总之,同号两数相加,取相同的符号,并把肯定值相加. 例如,(-4)+(-5),同号两数相加 (-4)+(-5)=-( ),取相同的符号 4+5=9把肯定值相加 (-4)+(-5)=-9. 口答练习: (1)举例说明算式7+9的实际意义? (2)(-20)+(-13)=? (3) 2.异号两数相
14、加 (1)某人向东走5米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米. 5+(-5)=0 可知,互为相反数的两个数相加,和为零. (2)某人向东走5米,再向西走3米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米. 就是 5+(-3)=2. (3)某人向东走3米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米. 就是 3+(-5)=-2. 请同学们想一想,异号两数相加的法则是怎么规定的?
15、强调和的符号是如何确定的?和的肯定值如何确定? 最终归纳 肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0. 例如(-8)+5肯定值不相等的异号两数相加 8>5 (-8)+5=-( )取肯定值较大的加数符号 8-5=3 用较大的肯定值减去较小的肯定值 (-8)+5=-3. 口答练习 用算式表示:温度由-4上升7,达到什么温度. (-4)+7=3() 3.一个数和零相加 (1)某人向东走5米,再向东走0米,两次一共向东走了多少米? 明显,5+0=5.结果向东走了5米. (2)某人向西走5米,再向东走0米,两次一共向东走了多少
16、米? 简单得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米. 请同学们把(1)、(2)画出图来 由(1),(2)得出:一个数同0相加,仍得这个数. 总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种状况. 有理数加法运算的三种状况: 特例:两个互为相反数相加; (3)一个数和零相加. 每种运算的法则强调:(1)确定和的符号;(2)确定和的肯定值的方法. (四)例题分析 例1 计算(-3)+(-9). 分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的肯定值就是把肯定值相加(应为3+9=12)(强调相同、相加的特征). 解:(-3)+(-9)
17、=-12. 例2 分析:这是异号两数相加,和的符号与肯定值较大的加数的符号相同(应为负),和的肯定值等于较大肯定值减去较小肯定值.(强调“两个较大”“一个较小”) 解: 解题时,先确定和的符号,后计算和的肯定值. (五)巩固练习 1.计算(口答) (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9); (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0; 2.计算 (1)5+(-22); (2)(-1.3)+(-8) (3)(-0.9)+1.5; (4)2.7+(-3.5) 探究活动 题目 (1)在1,2,3,4四个数的前面添加正号或
18、负号,使它们的和为0; (2)在1,2,3,11,12十二个数的前面添加正号或负号,使它们的和为零; (3)在1,2,3,4,99,100一百个数的前面添加正号或负号,使它们的和为0; (4) 在解决这个问题的过程中,你能总结出一些什么数学规律? 参考答案 我们不妨不妨以其次问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2. 现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要削减这个正数的两倍,因此可得到两个(明显的)解答: (1)得+1变为-1,有-12-11-10+9+8+7+6-5+4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 七年 级数 教案 范本
限制150内