高三数学知识点总结2020最新5篇范例.docx
《高三数学知识点总结2020最新5篇范例.docx》由会员分享,可在线阅读,更多相关《高三数学知识点总结2020最新5篇范例.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学知识点总结2020最新5篇 高三数学学问点1 (1)先看“充分条件和必要条件” 当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是简单理解的。 但为什么说q是p的必要条件呢? 事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p肯定不成立。这就是说,q对于p是必不行少的,因而是必要的。 (2)再看“充要条件” 若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q 回忆一下初中学过的“
2、等价于”这一概念;假如从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,事实上与“等价于”的含义完全相同。也就是说,假如命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。 (3)定义与充要条件 数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这肯定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。 明显,一个定理假如有逆定理,那么定理、逆定理合在一起,可以用一
3、个含有充要条件的语句来表示。 “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。 (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。 高三数学学问点2 (1)先看“充分条件和必要条件” 当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是简单理解的。 但为什么说q是p的必要条件呢? 事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p肯定不成立。这就是说,q对于p是必
4、不行少的,因而是必要的。 (2)再看“充要条件” 若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q 回忆一下初中学过的“等价于”这一概念;假如从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,事实上与“等价于”的含义完全相同。也就是说,假如命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。 (3)定义与充要条件 数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都
5、包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这肯定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。 明显,一个定理假如有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。 “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。 (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。 高三数学学问点3 符合肯定条件的动点所形成的图形,或者说,符合肯定条件的点的全体所组成的集合,叫做满意该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 知识点 总结 2020 最新 范例
限制150内