八年级上册数学教案北师大版汇编.docx
《八年级上册数学教案北师大版汇编.docx》由会员分享,可在线阅读,更多相关《八年级上册数学教案北师大版汇编.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级上册数学教案北师大版八年级上册数学教案北师大版1为了更好的引入“反比例函数”的概念,并能突出重点,我采纳了课本上的问题情境,同时调整了课本上供应的“思索”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有许多反比例关系。情境设置:汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的改变而改变。(1)你能用含v的代数式来表示t吗?(2)时间t是速度v的函数吗?设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能留意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。为帮助学
2、生更深刻的相识和驾驭反比例函数概念,我引导学生将反比例函数的一般式进行变形,并支配了相应的例题。一般式变形:(其中k均不为0)通过对一般式的变形,让学生从“形”上驾驭“反比例函数”的概念,在结合“思索”的几个问题,让学生从“神”神上体验“反比例函数”。为加深难度,我又补充了几个练习:1、为何值时,为反比例函数?2是的反比例函数,是的正比例函数,则与成什么关系?关于课堂教学:由于备课充分,我信念十足,课堂上心情饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。在复习“函数”这一概念的时候,许多学生显露出难色,明显不是遗忘了就是不知到如何表达。我举了两个简洁的实例,学生们马上就回忆起函数的本
3、质含义,为学习反比例函数做了很好的铺垫。一路走来,特别轻松。对反比例函数一般式的变形,是课堂教学中较胜利的一笔,就是因为这一探究过程,对于我补充的练习1这类属中等难度的题型,班级中成果偏下的同学也能很好的驾驭。而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感爱好的神情,不少学生能很好得解答此类题。阅历感想:1、课前仔细打算,对授课效果的影响是不容忽视的。2、老师的精神状态干脆影响学生的精神状态。3、数学教学肯定要重概念,抓本质。4、课堂上要注意学生情感,表情,可适当调整教学深度。#447240八年级上册数学教案北师大版2一、学习目标:1.经验探究平方差公式的过程.2.会
4、推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点: 平方差公式的推导和应用难点: 理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)20221999 (2)9981002导入新课: 计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2
5、y)例2:计算:(1)10298 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何说明.二、重点难点:重点: 完全平方公式的推导过程、结构特点、几何说明,敏捷应用难点: 理解完全平方公式的结构特征并能敏捷应用公式进行
6、计算三、合作学习.提出问题,创设情境一位老人特别喜爱孩子.每当有孩子到他家做客时,老人都要拿出糖果款待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)其次天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?.导入新课计算下列各式,你能发觉什么规律?(1)(p+1)2=(p+1)(p+1)=_;(2)(m+2)2=_;(3)(p-1)2=(p
7、-1)(p-1)=_;(4)(m-2)2=_;(5)(a+b)2=_;(6)(a-b)2=_.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则敏捷应用完全平方公式二、重点难点重点: 理解添括号法则,进一步熟识乘法公式的合理利用难
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 数学教案 北师大 汇编
限制150内