九年级数学下册28.2 《解直角三角形及其应用》PPT课件.ppt
《九年级数学下册28.2 《解直角三角形及其应用》PPT课件.ppt》由会员分享,可在线阅读,更多相关《九年级数学下册28.2 《解直角三角形及其应用》PPT课件.ppt(92页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,导入新课,讲授新课,当堂练习,课堂小结,28.2 解直角三角形及其应用,第二十八章 锐角三角函数,28.2.1 解直角三角形,新课标人教版九年级数学下册,1. 了解并掌握解直角三角形的概念;2. 理解直角三角形中的五个元素之间的联系. (重点)3. 学会解直角三角形. (难点),导入新课,(1) 三边之间的关系:a2+b2=_;,(2) 锐角之间的关系: A+B=_;,(3) 边角之间的关系:sinA=_,cosA=_, tanA=_.,如图,在RtABC中,共有六个元素(三条边,三个角), 其中C=90.,c2,90,复习引入,讲授新课,在图中的RtABC中,(1) 根据A75,斜边AB6
2、,你能求出这个直角三角形的其他元素吗?,合作探究,75,(2) 根据AC2.4,斜边AB6,你能求出这个直角三角形的其他元素吗?,在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的2个元素(至少有1个是边),就可以求出其余的3个未知元素.,由直角三角形中的已知元素,求出其余未知元素的过程,叫作解直角三角形.,解:,典例精析,例1 如图,在RtABC中,C = 90,AC = , ,解这个直角三角形.,在RtABC中,C90,a = 30,b = 20,根据条件解直角三角形.,解:根据勾股定理,练一练,例2 如图,在RtABC中,C90,B35,b=20,解这个直角三角形
3、(结果保留小数点后一位).,解:,1. 在 RtABC 中,C90,B72,c = 14. 根据条件解直角三角形.,解:,练一练,2. 如图,已知 AC = 4,求 AB 和 BC 的长,提示:作CDAB于点D,根据三角函数的定义,在RtACD,RtCDB中,即可求出 CD,AD,BD 的长,从而求解,在RtCDB中,DCB=ACBACD=45,,D,解:如图,作CDAB于点D,,在RtACD中,A=30,ACD=90-A=60,,BD=CD=2.,例3 如图,在RtABC 中,C=90,cosA = ,BC = 5, 试求AB的长.,解:,设, AB的长为,1. 在RtABC中,C=90,s
4、inA = ,BC=6,则 AB的值为 ( ) A4 B6 C8 D10,D,2. 如图,在菱形ABCD中,AEBC于点E,EC=4, sinB ,则菱形的周长是 ( ) A10 B20 C40 D28,C,练一练,图,提示:题目中没有给出图形,注意分类讨论.,例4 在ABC中,AB= ,AC=13,cosB= ,求BC的长.,解:cosB = ,B=45,,当ABC为钝角三角形时,如图,,AC=13,由勾股定理得CD=5,BC=BD-CD=12-5=7;,图,当ABC为锐角三角形时,如图,BC=BD+CD=12+5=17., BC的长为7或17.,当堂练习,C,2. 如图,在RtABC中,C
5、=90,B=30, AB=8,则BC的长是 ( ),D,1. 在RtABC中,C=90,a,b,c分别是A, B,C的对边,则下列各式正确的是 ( ) A. b=atanA B. b=csinA C. b=ccosA D. a=ccosA,A,C,B,3. 在RtABC中,C=90,B=37,BC=32,则 AC = (参考数据:sin370.60,cos370.80, tan370.75).,4. 如图,已知RtABC中,斜边BC上的高AD=3,cosB = ,则 AC 的长为 .,24,3.75,5. 如图,在RtABC中,C90,AC=6, BAC 的平分线 ,解这个直角三角形.,解:,
6、 AD平分BAC,,解:过点 A作 ADBC于D.在ACD中,C=45,AC=2,CD=AD=sinC AC= 2sin45= .在ABD中,B=30,BD=BC=CD+BD=,6. 如图,在ABC中,B=30,C=45,AC=2, 求BC.,D,解直角三角形,依据,解法:只要知道五个元素中的两个元素(至少有一个是边),就可以求出余下的三个未知元素,勾股定理,两锐角互余,锐角的三角函数,课堂小结,导入新课,讲授新课,当堂练习,课堂小结,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,新课标人教版九年级数学下册,28.2 解直角三角形及其应用,1. 巩固解直角三角形相关知识. (重点
7、)2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三 角函数解决问题(重点、难点),导入新课,情境引入,高跟鞋深受很多女性的喜爱,但有时候,如果鞋跟太高,也有可能“喜剧”变“悲剧”.,美国人体工程学研究人员卡特 克雷加文调查发现,70以上的女性喜欢穿鞋跟高度为6至7cm左右的高跟鞋. 但专家认为穿6cm以上的高跟鞋,腿肚、脚背等处的肌肉非常容易疲劳. 若某成年人的脚掌长为15cm,鞋跟约在3cm左右高度为最佳. 据此,可以算出高跟鞋的鞋底与地面的夹角为11左右时,人脚的感觉最舒适.,在直角三角形中,除直角外,由已知两元素 (必有一边) 求其余未知元素的
8、过程叫解直角三角形.,1. 解直角三角形,(1) 三边之间的关系:,a2b2c2(勾股定理);,2. 解直角三角形的依据,(2) 两锐角之间的关系:, A B 90;,(3) 边角之间的关系:,tanA,sinA,cosA,讲授新课,棋棋去景点游玩,乘坐登山缆车的吊箱经过点A到达点B时,它走过了200m. 在这段路程中缆车行驶的路线与水平面的夹角为30,你知道缆车垂直上升的距离是多少吗?,A,B,A,B,D,30,200m,BD=ABsin30=100m,合作探究,A,B,C,棋棋乘缆车继续从点B到达比点B高 200m的点C, 如果这段路程缆车的行驶路线与水平面的夹角为60,缆车行进速度为1m
9、/s,棋棋需要多长时间才能到达目的地?,A,B,D,C,E,60,200m,棋棋需要231s才能到达目的地.,例1 2012年6月18日,“神州”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接. “神州”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行. 如图,当组合体运行到离地球表面P点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少(地球半径约为6 400km, 结果取整数)?,最远点,典例精析,解:设POQ= ,FQ是O的切线,FOQ是直角三角形.,的长为,利用解直角三角形解决实际问题的一般过程:,1. 将实际问题抽象为数学问题;
10、,2. 根据条件的特点,适当选用锐角三角函数等 去解直角三角形;,画出平面图形,转化为解直角三角形的问题,3. 得到数学问题的答案;,4. 得到实际问题的答案.,归纳:,练一练,“欲穷千里目,更上一层楼”是唐代诗人李白的不朽诗句. 如果我们想在地球上看到距观测点1000里处景色,“更上一层楼”中的楼至少有多高呢?存在这样的楼房吗(设 代表地面,O为地球球心,C是地面上一点, =500km,地球的半径为6370 km,cos4.5= 0.997)?,解:设登到B处,视线BC在C点与地球相切,也就是 看C点,AB就是“楼”的高度,, AB=OBOA=63896370=19(km).即这层楼至少要高
11、19km,即1900m. 这是不存在的.,在RtOCB中,O,例2 如图,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60,则秋千踏板与地面的最大距离为多少?,0.5m,3m,60,0.5m,3m,A,B,C,D,E,60,分析:根据题意,可知秋千踏板与地面的最大距离为CE的长度.因此,本题可抽象为:已知 :DE=0.5m,AD=AB=3m,DAB=60,ACB为直角三角形,求CE的长度.,解:CAB=60,AD=AB=3m,,AC=ABcosCAB=1.5m,, CD=ADAC=1.5m,, CE=AD+
12、DE=2.0m.,即秋千踏板与地面的最大距离为2.0m.,如图,在电线杆上的C处引拉线CE,CF固定电线杆. 拉线CE和地面成60角,在离电线杆6米的A处测得AC与水平面的夹角为30,已知A与地面的距离为1.5米,求拉线CE的长.(结果保留根号),练一练,G,解:作AGCD于点G, 则AG=BD=6米,DG=AB=1.5米.,(米).,CD=CG+DG= ( +1.5) (米),, (米).,1. 课外活动小组测量学校旗杆的高度. 当太阳光线与 地面成30角时,测得旗杆在地面上的影长为24米, 那么旗杆的高度约是 ( ),当堂练习,A. 12米 B. 米 C. 24米 D. 米,B,2. 数学
13、课外兴趣小组的同学们要测量被池塘相隔的两 棵树A、B的距离,他们设计了如图所示的测量方案: 从树A沿着垂直于AB的方向走到E,再从E沿着垂 直于AE的方向走到F,C为AE上一点,其中3位同 学分别测得三组数据:AC,ACB;EF、DE、 AD;CD,ACB,ADB其中能根据所测数 据求得A、B两树距离的有 ( ) A0组 B.1组 C2组 D.3组,D,3. 一次台风将一棵大树刮断,经测量,大树刮断一端的 着地点A到树根部C的距离为4米,倒下部分AB与地平 面AC的夹角为45,则这棵大树高是 米.,A,C,B,4米,45,4. 如图,要测量B点到河岸AD的距离,在A点测得 BAD=30,在C点
14、测得BCD=60,又测得 AC=100米,则B点到河岸AD的距离为 ( ),A. 100米 B. 米 C. 米 D. 50米,B,5. (1)小华去实验楼做实验, 两幢实验楼的高度AB=CD =20m,两楼间的距离BC=15m,已知太阳光与水平 线的夹角为30,求南楼的影子在北楼上有多高?,北,A,B,D,C,15m,E,南,解:过点E作EFBC,,AFE=90,FE=BC=15m.,即南楼的影子在北楼上的高度为,(2) 小华想:若设计时要求北楼的采光,不受南楼的影响,请问楼间距BC长至少应为多少米?,A,B,?m,南,答案:BC至少为,课堂小结,利用解直角三角形解决实际问题的一般过程:,1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 下册 28.2 直角三角形 及其 应用 PPT 课件
限制150内