《最新高二数学知识点精选总结5篇范例.docx》由会员分享,可在线阅读,更多相关《最新高二数学知识点精选总结5篇范例.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新高二数学知识点精选总结5篇高二学生要依据自己的条件,以及中学阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,找寻一套行之有效的学习方法。下面就是小编给大家带来的高二数学学问点,希望能帮助到大家! 高二数学学问点1 (1)系统抽样(等距抽样或机械抽样): 把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本采纳简洁随机抽样的方法抽取。K(抽样距离)=N(总体规模)/n(样本规模) 前提条件:总体中个体的排列对于探讨的变量来说,应是随机的,即不存在某种与探讨变量相关的规则分布。可以在调查允许的条件下,从不同的样本起先抽样,对比几次样本的特点。假
2、如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。 (2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简洁。更为重要的是,假如有某种与调查指标相关的协助变量可供运用,总体单元按协助变量的大小依次排队的话,运用系统抽样可以大大提高估计精度。 高二数学学问点2 1.不等式证明的依据 (2)不等式的性质(略) (3)重要不等式:|a|≥0;a2≥0;(a-b)2≥0(a、b∈R) a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号) 2.不等式的证明方法 (1)比较法:要证明
3、a>b(a0(a-b<0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差变形推断符号. (2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法. (3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已推断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法. 证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 高二数学学问点3 1.定义法:推断B是A的条件,事实上就是推断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画
4、出箭头示意图,再利用定义推断即可。 2.转换法:当所给命题的充要条件不易推断时,可对命题进行等价装换,例如改用其逆否命题进行推断。 3.集合法 在命题的条件和结论间的关系推断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若A⊆B,则p是q的充分条件。 若A⊇B,则p是q的必要条件。 若A=B,则p是q的充要条件。 若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。 高二数学学问点4 1.几何概型的定义:假如每个事务发生的概率只与构成该事务区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.
5、几何概型的概率公式:P(A)=构成事务A的区域长度(面积或体积); 试验的全部结果所构成的区域长度(面积或体积) 3.几何概型的特点:1)试验中全部可能出现的结果(基本领件)有无限多个;2)每个基本领件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事务的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不行数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本学问点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可
6、能性两个特点,无限性是指在一次试验中,基本领件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本领件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事务A的概率可以用“事务A包含的基本领件所占的图形的长度、面积(体积)和角度等”与“试验的基本领件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 高二数学学问点5 1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个
7、数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,接着上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,接着这个操作,直到所得的数相等为止,则这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法是干脆插入排序和冒泡排序. 6.进位制是人们为了计数和运算便利而约定的记数系统.“满进一”,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再根据十进制数的运算规则计算出结果. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. 1.2020最新高二数学学问点归纳总结5篇精选 2.2020最新高二数学学问点总结5篇 3.精选最新高一数学学问点总结归纳5篇 4.最新高一数学学问点总结5篇 5.精选高一数学学问点总结归纳5篇
限制150内