2021北师大版九年级上册数学教案精编.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021北师大版九年级上册数学教案精编.docx》由会员分享,可在线阅读,更多相关《2021北师大版九年级上册数学教案精编.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021北师大版九年级上册数学教案2021北师大版九年级上册数学教案1 学习目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径. 4.娴熟驾驭圆周角的定理及其推理的敏捷运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想赐予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最终运用定理及其推导解决一些实际问题 学习过程 一、 温故知新: (学生活动)同学们口答下面两个问题. 1.什么叫圆心角? 2
2、.圆心角、弦、弧之间有什么内在联系呢? 二、 自主学习: 自学教材P90-P93,思索下列问题: 1、 什么叫圆周角?圆周角的两个特征: 。 2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题. (1)一个弧上所对的圆周角的个数有多少个? (2).同弧所对的圆周角的度数是否发生改变? (3).同弧上的圆周角与圆心角有什么关系? 3、默写圆周角定理及推论并证明。 4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗? 5、教材92页思索?在同圆或等圆中,假如两个圆周角相等,它们所对的弧肯定相等吗?为什么? 三、 典型例题: 例1、(教材
3、93页例2)如图, O的直径AB为10cm,弦AC为6cm,ACB的平分线交O于D,求BC、AD、BD的长。 例2、如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 四、 巩固练习: 1、(教材P93练习1) 解: 2、(教材P93练习2) 3、(教材P93练习3) 证明: 4、(教材P95习题24.1第9题) 五、 总结反思: 达标检测 1.如图1,A、B、C三点在O上,AOC=100,则ABC等于( ). A.140 B.110 C.120 D.130 (1) (2) (3) 2.如图2,1、2、3、4的大小关系是( ) A.4<1
4、<2<3 B.4<1=3<2 C.4<1<32 D.4<1<3=2 3.如图3,(中考题)AB是O的直径,BC,CD,DA是O的弦,且BC=CD=DA,则BCD等于( ) A.100 B.110 C.120 D.130 4.半径为2a的O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是_. 5.如图4,A、B是O的直径,C、D、E都是圆上的点,则1+2=_. (4) (5) 6.(中考题)如图5, 于 ,若 ,则 7.如图,弦AB把圆周分成1:2的两部分,已知O半径为1,求弦长AB. 拓展创新 1.如图,已知AB=AC,APC=60 (1)求
5、证:ABC是等边三角形. (2)若BC=4cm,求O的面积. 3、教材P95习题24.1第12、13题。 布置作业教材P95习题24.1第10、11题。 2021北师大版九年级上册数学教案2 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能娴熟应用它解决一些详细问题. 通过复习可干脆化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能干脆化成上面两种形式的一元二次方程的解题步骤. 重点 讲清干脆降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 难点 将不行干脆降次解方程化为可干脆降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活
6、动)请同学们解下列方程: (1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得 x=p或mx+n=p(p0). 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探究新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否干脆用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少? (1)列出的经化简为
7、一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征. (2)不能. 既然不能干脆降次解方程,那么,我们就应当设法把它转化为可干脆降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9 左边写成平方形式(x+3)2=25降次x+3=5即x+3=5或x+3=-5 解一次方程x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方
8、程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1用配方法解下列关于x的方程: (1)x2-8x+1=0(2)x2-2x-12=0 分析:(1)明显方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略. 三、巩固练习 教材第9页练习1,2.(1)(2). 四、课堂小结 本节课应驾驭: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以干脆降次解方程的方程. 五、作业布置 2021北师大版九年级上册数学教案3 一元二次方程 1.通过类比一元一次方程,了解一元二次方程的概念
9、及一般式ax2+bx+c=0(a0),分清二次项及其系数、一次项及其系数与常数项等概念. 2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点 通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0)和一元二次方程的解等概念,并能用这些概念解决简洁问题. 难点 一元二次方程及其二次项系数、一次项系数和常数项的识别. 活动1复习旧知 1.什么是方程?你能举一个方程的例子吗? 2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1 3.下列哪个实数是方程2x-1=3的解?并
10、给出方程的解的概念. A.0B.1C.2D.3 活动2探究新知 依据题意列方程. 1.教材第2页问题1. 提出问题: (1)正方形的大小由什么量确定?本题应当设哪个量为未知数? (2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简洁的形式吗?请说出整理之后的方程. 2.教材第2页问题2. 提出问题: (1)本题中有哪些量?由这些量可以得到什么? (2)竞赛队伍的数量与竞赛的场次有什么关系?假如有5个队参赛,每个队竞赛几场?一共有20场竞赛吗?假如不是20场竞赛,那么原委竞赛多少场? (3)假如有x个队参赛,一共竞赛多少场呢? 3.一个数比另一个数大
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 北师大 九年级 上册 数学教案 精编
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内