《高中数学常用逻辑用语ppt课件.ppt》由会员分享,可在线阅读,更多相关《高中数学常用逻辑用语ppt课件.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、常用逻辑用语常用逻辑用语复习复习知识网络 常用逻辑常用逻辑用语用语命 题 及 其 关命 题 及 其 关系系简单的逻辑联结简单的逻辑联结词词全称量词与存在全称量词与存在量词量词四种命题四种命题充分条件与必要条件充分条件与必要条件量词量词全称量词全称量词存在量词存在量词含有一个量词的否定含有一个量词的否定或或且且非非并集并集交集交集补集补集运算运算命题命题的形式:的形式:“若若P, P, 则则q”q” 通常通常,我们把这种形式的命题中的我们把这种形式的命题中的P叫做叫做命题的命题的条件条件,q叫做叫做结论结论.pq记做记做:一一. .用语言、符号或式子表达的,用语言、符号或式子表达的,可以判断可以
2、判断真真假假的的陈述句陈述句称为称为命题命题其中判断为其中判断为真真的语句称为的语句称为真命题,真命题,判断为判断为假假的的语句语句称为称为假假命题命题若若p 则则q逆否命题:逆否命题:原命题:原命题:逆命题:逆命题:否命题:否命题:若若q 则则p若若 p 则则 q若若 q 则则 p二、二、 四四 种种 命命 题题结论结论1 1:要写出一个命题的另外三个命:要写出一个命题的另外三个命题关键是题关键是分清命题的题设和结论(即分清命题的题设和结论(即把原命题写成把原命题写成“若若p则则q”的形式)的形式)注意:三种命题中最难写注意:三种命题中最难写 的是的是否命题。否命题。结论2:(1)“或或”的
3、否定为的否定为“且且”,(2)“且且”的否定为的否定为“或或”,(3)“都都”的否定为的否定为“不不都都”。三、四种命题之间的三、四种命题之间的 关系关系原命题原命题若若p则则q逆命题逆命题若若q则则p否命题否命题若若p则则q逆否命题逆否命题若若q则则p互逆互逆互互否否互互否否互逆互逆(2) 若其逆命题为真,则其否命题一定为若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。真。但其原命题、逆否命题不一定为真。 (1)原命题与逆否命题同真假。原命题与逆否命题同真假。(2)原命题的逆命题与否命题同真假。原命题的逆命题与否命题同真假。(1) 原命题为真,则其逆否命题一定为原命题为真
4、,则其逆否命题一定为真。但其逆命题、否真。但其逆命题、否命题不一定为真。命题不一定为真。四、命题真假性判断四、命题真假性判断结论:结论:反证法的一般步骤:反证法的一般步骤:(1)假设命题的结论不成立假设命题的结论不成立,即假即假 设结论的反面成立;设结论的反面成立; (2)从这个假设出发,经过推理从这个假设出发,经过推理论证,得出矛盾;论证,得出矛盾; (3) 由矛盾判定假设不正确,由矛盾判定假设不正确, 从而肯定命题的结论正确。从而肯定命题的结论正确。 反设反设归谬归谬结论结论反证法反证法1.写出命题写出命题“当当c0时,若时,若ab,则则acbc“的逆命题,否命题的逆命题,否命题与逆否命题
5、,并分别判断他们的真假与逆否命题,并分别判断他们的真假 2.写出命题写出命题“若若xa且且xb,则则x2(ab)xab0”的否命题的否命题 如果命题如果命题“若若p则则q”为真,则记为真,则记作作p q(或(或q p)。)。定义定义:如果如果 ,则说则说p是是q的充分的充分条件条件,q是是p的必要条件的必要条件pq 如果命题如果命题“若若p则则q”为假,则记作为假,则记作p q。充要条件充要条件 p q,相当于,相当于P q ,即即 P q 或或 P、q充要条件定义充要条件定义:pqqppq如果既有,又有就记做称称:p是是q的的充分必要条件充分必要条件,简称简称充要条件充要条件显然显然,如果如
6、果p是是q的充要条件的充要条件,那么那么q也是也是p的充要条件的充要条件p与与q互为充要条件互为充要条件(也可以说成也可以说成”p与与q等价等价”)1、充分且必要条件、充分且必要条件2、充分非必要条件、充分非必要条件3、必要非充分条件、必要非充分条件4、既不充分也不必要条件、既不充分也不必要条件各种条件的可能情况各种条件的可能情况充分非必要条件充分非必要条件必要非充分条件必要非充分条件1)A B且且B A,则,则A是是B的的2)若)若A B且且B A,则,则A是是B的的3 3)若)若A BA B且且B AB A,则,则A A是是B B的的既不充分也不必要条件既不充分也不必要条件充分且必要条件充
7、分且必要条件4)A B且且B A,则,则A是是B的的3 3)若)若A BA B且且B AB A,则甲是乙的则甲是乙的2) 若若A B且且B A,则甲是乙的,则甲是乙的1)若)若A B且且B A,则甲是乙的,则甲是乙的充分非必要条件充分非必要条件必要非充分条件必要非充分条件既不充分也不必要条件既不充分也不必要条件一般情况下若条件甲为一般情况下若条件甲为,条件乙为,条件乙为4)若)若A=B ,则甲是乙的,则甲是乙的充分且必要条件充分且必要条件。1.1.在判断条件时,要特别注意的是它们能否互相在判断条件时,要特别注意的是它们能否互相推出,切不可不加判断以单向推出代替双向推出推出,切不可不加判断以单向
8、推出代替双向推出. .2.2.搞清搞清A A是是B B的的充分条件充分条件与与A A是是B B的的充分非必要条件充分非必要条件之间之间的区别与联系;的区别与联系;A A是是B B的的必要条件必要条件与与A A是是B B的的必要非充分条件必要非充分条件之间之间的区别与联系的区别与联系、注意几种方法的灵活使用:、注意几种方法的灵活使用:定义法、集合法、逆否命题法定义法、集合法、逆否命题法1:填写:填写“充分不必要,必要不充分,充要,充分不必要,必要不充分,充要,既不充分又不必要。既不充分又不必要。1)sinAsinB是是AB的的_条件。条件。2)在)在ABC中,中,sinAsinB是是 AB的的
9、_条件。条件。既不充分又不必要既不充分又不必要充要条件充要条件注、注、定义法(图形分析)定义法(图形分析)2、ab成立的充分不必要的条件是(成立的充分不必要的条件是( ) A. acbc B. a/cb/c C. a+cb+c D. ac2bc2D3 3. .关于关于x x的不等式:的不等式:x x+ +x-1x-1m m的的 解集为解集为R R的充要条件是的充要条件是( ) ( ) (A)m (A)m0 (B)m0 0 (B)m0 (C)m (C)m1 (D)m1 1 (D)m1 C练习练习4、1、设集合、设集合M=x|x2,N=x|x3,那么那么”xM或或xN”是是“xMN”的的 A.充要
10、条件充要条件 B必要不充分条件必要不充分条件 C充分不必要充分不必要 D既不充分也不必要既不充分也不必要B注、注、集合法集合法2、aR,|a|3成立的一个必要不充分条件是成立的一个必要不充分条件是 A.a3 B.|a|2 C.a29 D.0a 是是 都是都是至多至多有一有一个个 至少至少有一有一个个任任意意的的所有所有的的否定否定 不不是是不都不都是是至少至少有两有两个个没有没有一个一个某某个个某些某些1.已知已知p: 方程方程 有有 两个不两个不等的负实根;等的负实根;q:方程方程 无实根无实根.若若 为真,为真, 为假,为假,求实数求实数m的取值范围的取值范围210 xmx 244(2)1
11、0 xmx pqpq2.给出下列命题:给出下列命题:关于关于x的不等式的不等式 对对x R恒成立;恒成立; 是减函数。是减函数。若若和和中至少有一个是真命题,求实数中至少有一个是真命题,求实数m的取值范围的取值范围2(2)2(2)40mxmx2( )(1 3)xf xmm 常见的全称量词还有常见的全称量词还有:“对所有的对所有的”,”对任意一个对任意一个”,”对一对一切切”,”对每一个对每一个”,”任给任给”,”所有的所有的”等等. 短语短语”对所有的对所有的”对任意一对任意一个个”在逻辑中通常叫做在逻辑中通常叫做全称量词全称量词,并用符号并用符号 “ ”表示表示.含有全称含有全称量词的命题量
12、词的命题,叫做叫做全称命题全称命题. 全称量词与存在量词全称量词与存在量词全称命题全称命题”对对M中任意一个中任意一个x有有p(x)成立成立”可用符号简记为可用符号简记为读作读作”对任意对任意x属于属于M,有有p(x)成成立立”., ( )xM p x 通通 常常 , 将将 含含 有有 变变 量量 x x的的 语语 句句 用用 p p( (x x) )、 q q( (x x) )、r r( (x x) )表表 示示 , 变变 量量 x x的的 取取 值值 范范 围围 用用 M M表表 示示 。 常见的存在量词还有常见的存在量词还有”有些有些”有有一个一个”有的有的”对某个对某个”等等. 短语短
13、语”存在一个存在一个”至少有一个至少有一个”在在逻辑上通常叫做逻辑上通常叫做存在量词存在量词,并用符号并用符号” ”表示表示.含有存在量词的命题含有存在量词的命题,叫做叫做特称命题特称命题.存在量词存在量词 特称命题特称命题”存在存在M中的一个中的一个x,使使p(x)成成立立”可用符号简记为可用符号简记为读做读做”存在一个存在一个x,使使p(x)成立成立”., ( ).xM p x 一般地一般地,对于含有一个量词的全称命题的否对于含有一个量词的全称命题的否定定,有下面的结论有下面的结论:全称命题全称命题p:全称命题的否定是特称命题全称命题的否定是特称命题., ( ),xM P x 它的否定 p:xM, p(x).含有一个量词含有一个量词 的命题的否定的命题的否定一般地一般地,对于含有一个量词的特称命题的否定对于含有一个量词的特称命题的否定,有下面的结论有下面的结论: x xM M, ,p p( (x x) )特称命题特称命题:p它的否定它的否定:p x xM M, , p p( (x x) )特称命题的否定是全称命题.1.写出下列命题的否定,判断它们否定写出下列命题的否定,判断它们否定的真假的真假(1)无论)无论x为何实数,为何实数,sin2xcos2x=1(2)存在存在a,使得,使得不等式不等式ax2x10有实数解有实数解
限制150内