初中八年级上学期的数学教案精品.docx
《初中八年级上学期的数学教案精品.docx》由会员分享,可在线阅读,更多相关《初中八年级上学期的数学教案精品.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中八年级上学期的数学教案初中八年级上学期的数学教案1 一、内容和内容解析 1.内容 三角形中相关元素的概念、按边分类及三角形的三边关系. 2.内容解析 三角形是一种最基本的几何图形,是相识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关学问有更为深刻的理解. 本节课的教学重点:三角形中的相关概念和三角形三边关系. 本节课的教学难点:三角形的三边关系. 二、目标和目标解析 1.教学目标 (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素. (2)理解并且敏捷
2、应用三角形三边关系. 2.教学目标解析 (1)结合详细图形,识三角形的概念及其基本元素. (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类. (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题. 三、教学问题诊断分析 在探究三角形三边关系的过程中,让学生经验视察、探究、推理、沟通等活动过程,培育学生的和推理实力和合作学习的精神. 四、教学过程设计 1.创设情境,提出问题 问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义. 师生活动:先让学生分组探讨,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整
3、性,加深学生对三角形概念的理解. 三角形概念的获得,要让学生经验其描述的过程,借此培育学生的语言表述实力,加深学生对三角形概念的理解. 2.抽象概括,形成概念 动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义. 师生活动: 三角形的定义:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形. 让学生体会由抽象到详细的过程,培育学生的语言表述实力. 补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法. 师生活动:结合详细图形,老师引导学生分析,让学生学会由文字语言向几何语言的过渡. 进一步加深学生对三角形中相关元素的认知,并进一步熟识几何语言在学习中的应用.
4、3.概念辨析,应用巩固 如图,不重复,且不遗漏地识别全部三角形,并用符号语言表示出来. 1.以AB为一边的三角形有哪些? 2.以D为一个内角的三角形有哪些? 3.以E为一个顶点的三角形有哪些? 4.说出BCD的三个角. 师生活动:引导学生从概念动身进行思索,加深学生对三角形中相关元素概念的理解. 4.拓广延长,探究分类 我们知道,根据三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,假如要根据边的大小关系对三角形进行分类,又应当如何分呢?小组之间同学进行沟通并说说你们的想法. 师生活动:通过探讨,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念
5、,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解. 初中八年级上学期的数学教案2 教学目标 1.学问与技能 领悟运用完全平方公式进行因式分解的方法,发展推理实力. 2.过程与方法 经验探究利用完全平方公式进行因式分解的过程,感受逆向思维的意义,驾驭因式分解的基本步骤. 3.情感、看法与价值观 培育良好的推理实力,体会“化归”与“换元”的思想方法,形成敏捷的应用实力. 重、难点与关键 1.重点:理解完全平方公式因式分解,并学会应用. 2.难点:敏捷地应用公式法进行因式分解. 3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目
6、的. 教学方法 采纳“自主探究”教学方法,在老师适当指导下完成本节课内容. 教学过程 一、回顾沟通,导入新知 1.分解因式: (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2; (3)x2-0.01y2. 2.计算下列各式: (1)(m-4n)2;(2)(m+4n)2; (3)(a+b)2;(4)(a-b)2. 引导学生完成下面两道题,并运用数学“互逆”的思想,找寻因式分解的规律. 3.分解因式: (1)m2-8mn+16n2(2)m2+8mn+16n2; (3)a2+2ab+b2;(4)a2-2ab+b2. 从逆向思维的角度入手,很快得到下面答案: 解:(1)m2-8mn+16n
7、2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2; (3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2. 完全平方公式a22ab+b2=(ab)2. 二、范例学习,应用所学 把下列各式分解因式: (1)-4a2b+12ab2-9b3;(2)8a-4a2-4; (3)(x+y)2-14(x+y)+49;(4)+n4. 假如x2+axy+16y2是完全平方,求a的值. 依据完全平方式的定义,解此题时应分两种状况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3. 三、随堂练习,巩固深化 课本P170练习第1、2题. 1.已知x+y=7,x
8、y=10,求下列各式的值. (1)x2+y2;(2)(x-y)2 2.已知x+=-3,求x4+的值. 四、课堂总结,发展潜能 由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个: a2-b2=(a+b)(a-b); a2ab+b2=(ab)2. 在运用公式因式分解时,要留意: (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些状况下,多项式不肯定能干脆用公式,须要进行适
9、当的组合、变形、代换后,再运用公式法分解;(3)当多项式各项有公因式时,应当首先考虑提公因式,然后再运用公式分解. 五、布置作业,专题突破 初中八年级上学期的数学教案3 1、会用十字相乘法进行二次三项式的因式分解; 2、通过自己的不断尝试,培育耐性和信念,同时在尝试中提高视察实力。 重点:能娴熟应用十字相乘法进行的二次三项的因式解。 难点:精确地找出二次三项式中的常数项分解的两个因数与多项式中的一次项的系数存在的关系,并能区分他们之间的符号关系。 自主探究与小组合作沟通相结合. 模块一 预习反馈 一.学习打算: (一)、解答下列两题,视察各式的特点并回答它们存在的关系 1.(1)(x+2)(x
10、+3)= (2)(x-2)(x-3)= (3)(x-2)(x+3)= (4)(x+2)(x-3)= (5)(x+a)(x+b)=x2+( )x+ 2.(1)x2+5x+6=( )( ) (2)x2-5x+6=( )( ) (3)x2+x-6=( )( ) (4)x2-x-6=( )( ) (二)十字相乘法 步骤:(1)列出常数项分解成两个因数的积的各种可能状况; (2)尝试其中的哪两个因数的和恰好等于一次项系数; (3)将原多项式分解成的形式。 关键:乘积等于常数项的两个因数,它们的和是一次项系数 二次项、常数项分解竖直写,符号确定常数式,交叉相乘验中项,横向写出两因式 例如:x2+7x+12
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 年级 上学 数学教案 精品
限制150内